Skip to main content

Advertisement

Log in

The quest for a humanori

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Attempts at identifying DNA replication origins in human cells have been performed with a variety of molecular genetic and biochemical approaches, with often controversial results.

The combination of bromodeoxyuridine labelling, immunopurification of newly synthesized labelled DNA, measurement of the relative abundance of markers in this DNA by quantitative competitive PCR, has allowed the identification within 450 bp of the start-site of DNA replication located at the human lamin B2 gene. The origin is located near the non-transcribed spacer between two highly transcribed genes and shows evidence of a number of specific protein-DNA interactions, the most prominent of which disappears when the cells are differentiated into a non-proliferating state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anachkova, B. & J.L. Hamlin, 1989. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element. Mol. Cell. Biol. 9: 532–540.

    PubMed  Google Scholar 

  • Bagnarelli, P., S. Menzo, A. Valenza, A. Manzin, M. Giacca, F. Ancarani, G. Scalise, P.E. Varaldo & M. Clementi, 1992. Molecular profile of human immunodeficiency virus type-1 infection in symptomless patients and in patients with AIDS. J. Virol. 66: 7328–7335.

    PubMed  Google Scholar 

  • Bell, S.P., R. Kobayashi & B. Stillman, 1993. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262: 1844–1849.

    PubMed  Google Scholar 

  • Bell, S.P. & B. Stillman, 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357: 128–134.

    PubMed  Google Scholar 

  • Biamonti, G., G. Della Valle, D. Talarico, F. Cobianchi, S. Riva & A. Falaschi, 1985. Fate of exogenous recombinant plasmids introduced into mouse and human cells. Nucleic Acids Res. 13: 5545–5561.

    PubMed  Google Scholar 

  • Biamonti, G., M. Giacca, G. Perini, G. Contreas, L. Zentilin, F. Weighardt, M. Guerra, G. Della Valle, S. Saccone, S. Riva & A. Falaschi, 1992a. The gene for a novel human lamin maps at a highly transcribed locus of chromosome-19 which replicates at the onset of S-phase. Mol. Cell. Biol. 12: 3499–3506.

    PubMed  Google Scholar 

  • Biamonti, G., G. Perini, F. Weighardt, S. Riva, M. Giacca, P. Norio, L. Zentilin, S. Diviacco, D. Dimitrova & A. Falaschi, 1992b. A human DNA replication origin: localization and transcriptional characterization. Chromosoma 102: S24-S31.

    PubMed  Google Scholar 

  • Bramhill, D. & A. Kornberg, 1988: A model for initiation at origins of DNA replication. Cell 54: 915–918.

    PubMed  Google Scholar 

  • Brewer, B.J. & W.L. Fangman, 1987. The localization of replication origins on ARS plasmids inS. cerevisiae. Cell 51: 463–471.

    PubMed  Google Scholar 

  • Burhans, W.C., J.E. Selegue & N.H. Heintz, 1986. Isolation of the origin of replication associated with the amplified Chinese hamster dihydrofolate reductase domain. Proc. Natl. Acad. Sci. USA 83: 7790–7794.

    PubMed  Google Scholar 

  • Burhans, W.C., L.T. Vassilev, M.S. Caddle, N.H. Heintz & M.L. DePamphilis, 1990. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62: 955–965.

    PubMed  Google Scholar 

  • Burhans, W.C., L.T. Vassilev, J. Wu, J.M. Sogo, F.S. Nallaseth & M.L. DePamphilis, 1991. Emetine allows identification of origins of mammalian DNA replication by imbalanced DNA synthesis, not through conservative nucleosome segregation. EMBO J. 10: 4351–4360.

    PubMed  Google Scholar 

  • Caddle, M.S. & M.P. Calos, 1992. Analysis of the autonomous replication behavior in human cells of the dihydrofolate reductase putative chromosomal origin of replication. Nucleic Acids Res. 20: 5971–5978.

    PubMed  Google Scholar 

  • Contreas, G., M. Giacca & A. Falaschi, 1992. Purification of BrdUrd-substituted DNA by immunoaffinity chromatography with anti-BrdUrd antibodies. Biotechniques 12: 824.

    PubMed  Google Scholar 

  • Cook, P.R., 1991. The nucleoskeleton and the topology of replication. Cell 66: 627–635.

    PubMed  Google Scholar 

  • Cox, L.S. & R.A. Laskey, 1991. DNA replication occurs at discrete sites in pseudonuclei assembled from purified DNAin vitro. Cell 66: 271–275.

    PubMed  Google Scholar 

  • Csordas Toth, E., L. Marusic, A. Ochem, A. Patthy, S. Pongor, M. Giacca & A. Falaschi, 1993. Interactions of USF and Ku antigen with a human DNA region containing a replication origin. Nucleic Acids Res. 21: 3257–3263.

    PubMed  Google Scholar 

  • Demarchi, F., P. D'Agaro, A. Falaschi & M. Giacca, 1992. Probing protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1 byin vivo footprinting. J. Virol. 66: 2514–2518.

    PubMed  Google Scholar 

  • Demarchi, F., P. D'Agaro, A. Falaschi & M. Giacca, 1993.In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. in press.

  • DePamphilis, M.L., 1988. Transcriptional elements as components of eukaryotic origins of DNA replication. Cell 52: 635–638.

    PubMed  Google Scholar 

  • Diffley, J.F.X. & J.H. Cocker, 1992. Protein-DNA interactions at a yeast replication origin. Nature 357: 169–172.

    PubMed  Google Scholar 

  • Dijkwel, P.A., J.P. Vaughn & J.L. Hamlin, 1991. Mapping replication initiation sites in mammalian genomes by two-dimensional gel analysis: stabilization and enrichment of replication intermediates by isolation on the nuclear matrix. Mol. Cell. Biol. 11: 3850–3859.

    PubMed  Google Scholar 

  • Dimitrova, D., M. Giacca & A. Falaschi, 1994. A modified protocol forin vivo footprinting by ligation-mediated polymerase chain reaction. Nucleic Acids Res. 22: 532–533.

    PubMed  Google Scholar 

  • Dimitrova, D., L. Vassilev, B. Anachkova & G. Russev, 1994. Isolation and cloning of putative mouse DNA replication initiation sites: binding to nuclear protein factors. Nucleic Acids Res. 21: 5554–5560.

    Google Scholar 

  • Diviacco, S., P. Norio, L. Zentilin, S. Menzo, M. Clementi, G. Biamonti, S. Riva, A. Falaschi & M. Giacca, 1992. A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates. Gene 122: 313–320.

    PubMed  Google Scholar 

  • Falaschi, A., M. Giacca, L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, S. Kumar, R. Tuteja, G. Biamonti, G. Perini, F. Weighart & S. Riva, 1993. Searching for replication origins of mammalian DNA. Gene 135: 125–135.

    PubMed  Google Scholar 

  • Ferre, F., 1992. Quantitative or semi-quantitative PCR: reality versus myth. PCR Methods and applications 2: 1–9.

    PubMed  Google Scholar 

  • Frappier, L. & M. Zannis-Hadjopoulos, 1987. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences. Proc. Natl. Acad. Sci. USA 84: 6668–6672.

    PubMed  Google Scholar 

  • Giacca, M., L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, G. Contreas, G. Biamonti, G. Perini, F. Weighardt, S. Riva & A. Falaschi, 1994. Fine mapping of a replication origin of human DNA. Proc. Natl. Acad. Sci. USA 91: 7119–7123.

    PubMed  Google Scholar 

  • Gilbert, D. & S.N. Cohen, 1989. Autonomous replication in mouse cells: a correction. Cell 56: 143–144.

    PubMed  Google Scholar 

  • Gilliland, G., S. Perrin, K. Blanchard & H.F. Bunn, 1990. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87: 2725–2729.

    PubMed  Google Scholar 

  • Handeli, S., A. Klar, M. Meuth & H. Cedar, 1989. Mapping replication units in animal cells. Cell 57: 909–920.

    PubMed  Google Scholar 

  • Heck, M.M.S. & A.C. Spradling, 1990. Multiple replication origins are used duringDrosophila chorion gene amplification. J. Cell. Biol. 110: 903–914.

    PubMed  Google Scholar 

  • Huberman, J.A. & A.D. Riggs, 1968. On the mechanisms of DNA replication in mammalian chromosomes. J. Mol. Biol. 32: 327–337.

    PubMed  Google Scholar 

  • Huberman, J.A., L.D. Spotlia, K.A. Nawotka, S.M. El-Assouli & L.R. Davis, 1987. Thein vivo replication origin of the yeast 2 m plasmid. Cell 51: 473–481.

    PubMed  Google Scholar 

  • Hyrien, O. & M. Mechali, 1993. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12: 4511–4520.

    PubMed  Google Scholar 

  • Jacob, F., S. Brenner & F. Cuzin, 1963. Cold Spring Harbor Symp. Quant. Biol. 28: 329–334.

    Google Scholar 

  • Kitysberg, D., S. Selig, J. Keshet & H. Cedar, 1993. Replication structure of the human β-globin gene domain. Nature 368: 588–590.

    Google Scholar 

  • Kornberg, A. & T. Baker, 1992. DNA Replication — Second edition. Freeman, W.H. and Company, New York.

    Google Scholar 

  • Krysan, P.J. & M.P. Calos, 1991. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol. 11: 1464–1472.

    PubMed  Google Scholar 

  • Krysan, P.J., S.B. Haase & M.P. Calos, 1989. Isolation of human sequences that replicate autonomously in human cells. Mol. Cell. Biol. 9: 1026–1033.

    PubMed  Google Scholar 

  • Landry, S. & M. Zannis-Hadjopoulos, 1991. Classes of autonomously replicating sequences are found among early-replicating monkey DNA. B.B.A. 1088: 234–244.

    Google Scholar 

  • Leu, T.-H. & J.L. Hamlin, 1989. High-resolution mapping of replication fork movement through the amplified dihidrogolate reductase domain in CHO cells by in-gel renaturation analysis. Mol. Cell. Biol. 9: 523–531.

    PubMed  Google Scholar 

  • Linskens, M.H. & J.A. Huberman, 1990. The two faces of higher eukaryotic DNA replication origins. Cell 62: 845–847.

    PubMed  Google Scholar 

  • Little, R.D., T.H.K. Platt & C.L. Schildkraut, 1993. Initiation and termination of DNA replication in human rRNA genes. Mol. Cell. Biol. 13: 6600–6613.

    PubMed  Google Scholar 

  • Marians, K.J., 1992. Prokaryotic DNA replication. Annu. Rev. Biochem. 61: 673–719.

    PubMed  Google Scholar 

  • McWhinney, C. & M. Leffak, 1990. Autonomous replication of a DNA fragment containing the chromosomal replication origin of the humanc-myc gene. Nucleic Acids Res. 18: 1233–1242.

    PubMed  Google Scholar 

  • Menzo, S., P. Bagnarelli, M. Giacca, A. Manzin, P.E. Varaldo & M. Clementi, 1992. Absolute quantitation of viremia in HIV-infected asymptomatic subjects by competitive reverse-transcription and polymerase chain reaction. J. Clin. Microbiol. 30: 1752–1757.

    PubMed  Google Scholar 

  • Mueller, P.R. & B. Wold, 1989.In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246: 780–786.

    PubMed  Google Scholar 

  • Murakami, Y., T. Eki & J. Hurwitz, 1992. Studies on the initiation of Simian Virus-40 replicationin vitro — RNA primer synthesis and its elongation. Proc. Natl. Acad. Sci. USA 89: 952–956.

    PubMed  Google Scholar 

  • Natale, D.A., R.M. Umek & D. Kowalski, 1993. Ease of DNA unwinding is a conserved property of yeast replication origins. Nucleic Acids Res. 21: 555–560.

    PubMed  Google Scholar 

  • Nawotka, K.A. & J.A. Huberman, 1988. Two-dimensional gel electrophoretic method for mapping DNA replicons. Mol. Cell. Biol. 8: 1408–1413.

    PubMed  Google Scholar 

  • Newlon, C.S., 1988. Yeast chromosome replication and segregation. Micribial. Rev. 52: 568–601.

    Google Scholar 

  • Pfeifer, G.P., S.D. Steigerwald, P.R. Mueller, B. Wold & A.D. Riggs, 1989. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246: 810–813.

    PubMed  Google Scholar 

  • Razin, S.V., M.G. Kekelidze, E.M. Lukanidin, K. Scherre & G.P. Georgiev, 1986. Replication origins are attached to the nuclear skeleton. Nucleic Acids Res. 14: 8189–8207.

    PubMed  Google Scholar 

  • Sestini, R., C. Orlando, L. Zentilin, S. Gelmini, P. Pinzani, M. Giacca & M. Pazzagli, 1994. Measuring c-erbB02 oncogene amplification in fresh and paraffin-embedded tumors by competitive polymerase chain reaction. Clin. Chem. 40: 630–636.

    PubMed  Google Scholar 

  • Siebert, P.D. & J.W. Larrick, 1992. Competitive PCR. Nature 359: 557–558.

    PubMed  Google Scholar 

  • Stillman, B., 1989. Initiation of eukaryotic DNA replicationin vitro. Annu. Rev. Cell. Biol.

  • Stinchcomb, D.T., K. Struhl & R.W. Davis, 1979. Isolation and characterization of a yeast chromosomal replicator. Nature 282: 39–43.

    PubMed  Google Scholar 

  • Tribioli, C., G. Biamonti, M. Giacca, M. Colonna, S. Riva & A. Falaschi, 1987. Characterization of human DNA sequences synthesized at the onset of S-phase. Nucleic Acids Res. 15: 10211–10232.

    PubMed  Google Scholar 

  • Umek, R.M. & D. Kowalski, 1988. The ease of DNA unwinding as a determinant of initiation at yeast replication origins. Cell 52: 559–567.

    PubMed  Google Scholar 

  • Vassilev, L. & E.M. Johnson, 1990. An initiation zone of chromosomal DNA replication located upstream of thec-myc gene in proliferating HeLa cells. Mol. Cell. Biol. 10: 4899–4904.

    PubMed  Google Scholar 

  • Vassilev, L.T., W.C. Burhans & M.L. DePamphilis, 1990. Mapping an origin of DNA replication at a single-copy locus in exponentially proliferating mammalian cells. Mol. Cell. Biol. 10: 4685–4689.

    PubMed  Google Scholar 

  • Vaughn, J.P., P.A. Dijkwel & J.L. Hamlin, 1990. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell 61: 1075–1087.

    PubMed  Google Scholar 

  • Waga, S. & B. Stillman, 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369: 207–212.

    PubMed  Google Scholar 

  • Wu, C., H.M. Zannis & G.B. Price, 1993. In vivo activity for initiation of DNA replication resides in a transcribed region of the human genome. Biochim. Biophys. Acta 1174: 258–266.

    PubMed  Google Scholar 

  • Zhu, J., C. Brun, H. Kurooka, M. Yanagida & J.A. Huberman, 1992. Identification and characterization of a complex chromosomal replication origin inSchizosaccharomyces pombe. Chromosoma 102: S7-S16.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falaschi, A., Giacca, M. The quest for a humanori . Genetica 94, 255–266 (1994). https://doi.org/10.1007/BF01443439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443439

Key words

Navigation