Skip to main content
Log in

QMR: a quasi-minimal residual method for non-Hermitian linear systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The biconjugate gradient (BCG) method is the “natural” generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. In this paper, we present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Duff, I.S., Grimes, R.G., Lewis, J.G. (1989): Sparse matrix test problems. ACM Trans. Math. Softw.15, 1–14

    Google Scholar 

  2. Faber, V., Manteuffel, T. (1984): Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal.21, 352–362

    Google Scholar 

  3. Fischer, B., Freund, R.W. (1990): On the constrained Chebyshev approximation problem on ellipses. J. Approx. Theory62, 297–315

    Google Scholar 

  4. Fletcher, R. (1976): Conjugate gradient methods for indefinite systems. In: G. A. Watson, ed., Numerical Analysis Dundee 1975, pp. 73–89. Lecture Notes in Mathematics 506. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Freund, R.W. (1989): Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices. Technical Report 89.54, RIACS, NASA Ames Research Center

  6. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M. (1990): An implementation of the lookahead Lanczos algorithm for non-Hermitian matrices, Part. I. Technical Report 90.45, RIACS, NASA Ames Research Center

  7. Freund, R.W., Nachtigal, N.M. (1990): An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, Part II. Technical Report 90.46, RIACS, NASA Ames Research Center

  8. Golub, G.H., Van Loan, C.F. (1983): Matrix computations. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  9. Gutknecht, M.H. (1990): A completed theory of the unsymmetric Lanczos process and related algorithms, Part II. IPS Research Report No. 90-16, Zürich

  10. Gutknecht, M.H. (1990): A completed theory of the unsymmetric Lanczos process and related algorithms, Part II. IPS Research Report No. 90-16, Zürich

  11. Hestenes, M.R., Stiefel, E. (1952): Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand.49, 409–436

    Google Scholar 

  12. Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand.45, 255–282

    Google Scholar 

  13. Lanczos, C. (1952): Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand.49, 33–53

    Google Scholar 

  14. Manteuffel, T.A. (1977): The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.28, 307–327

    Google Scholar 

  15. Meijerink, J.A., van der Vorst, H.A. (1977): An interative solution for linear systems of which the coefficient matrix is a symmetricM-matrix. Math. Comp.31, 148–162

    Google Scholar 

  16. Paige, C.C., Saunders, M.A. (1975): Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal.12, 617–629

    Google Scholar 

  17. Parlett, B.N. (1990): Reduction to tridiagonal form and minimal realizations. Preprint, Berkeley

  18. Parlett, B.N., Taylor, D.R., Liu, Z.A. (1985): A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp.44, 105–124

    Google Scholar 

  19. Saad, Y. (1982): The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal.19, 485–506

    Google Scholar 

  20. Saad, Y. (1990): SPARSKIT: a basic tool kit for sparse matrix computations. Technical Report 90.20, RIACS, NASA Ames Research Center

  21. Saad, Y., Schultz, M.H. (1986): GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.7, 856–869

    Google Scholar 

  22. Sonneveld, P. (1989): CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.10, 36–52

    Google Scholar 

  23. Taylor, D.R. (1982): Analysis of the look ahead Lanczos algorithm. Ph.D. Dissertation, University of California Berkeley

    Google Scholar 

  24. van der Vorst, H.A. (1990): Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. Preprint, Utrecht

  25. Wilkinson, J.H. (1965): The Algebraic Eigenvalue Problem. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by DARPA via Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research Association (USRA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, R.W., Nachtigal, N.M. QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991). https://doi.org/10.1007/BF01385726

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385726

Mathematics Subject Classification (1991)

Navigation