Skip to main content
Log in

Intracellular transport in axonal microtubular domains II. Velocity profile and energetics of circumtubular flow

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The microtubule is a highly efficient vectorial structure that could orient a transport force generating mechanism and also absorb the recoil produced by vectorial force generation. We have assumed that a nonspecific shear force is generated in a narrow annulus around the microtubule and have calculated the velocity profiles in the shear flow and drag flow regions that result from such a mechanism. This circumtubular flow of low visocosity cytoplasm is thought to be the basic carrier stream that produces the observed axoplasmic transport phenomena. These carrier streams are devoid of neurofilaments and form the halos or exclusion zones seen around microtubules in electron micrographs. Individual carrier streams may merge hydrodynamically to produce transport domains that are capable of moving large organelles in a saltatory manner. Exchange of material between the low viscosity transport domains and the high macroviscosity neurofilament regions produces mass fluxes akin to those found in chromatographic columns. Calculations of energy required to maintain streaming and of the energy available to the transport system show a close correspondence and demonstrate that a continuous carrier stream activity is energetically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, G., Gabrion, J., Travers, F., Assenmacher, I., 1981: Ultrastructural organization of actin filaments in neurosecretory axons of the rat. Cell Tiss. Res.214, 323–341.

    Google Scholar 

  • Amos, L. A., 1975: Substructure and symmetry of microtubules. In: Microtubules and Microtubule Inhibitors (Borgers, M., De Brabander, M., eds.), pp. 21–34. Amsterdam: Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Bergmeyer, H. U., 1974: Methoden der Enzymatischen Analyse, Vol.2, pp. 2344–2346. Weinheim: Verlag Chemie.

    Google Scholar 

  • Berlinrood, M., McGee-Russell, S. M., Allen, R. D., 1972: Patterns of particle movement in nerve fibersin vitro, an analysis by photokymography and microscopy. J. Cell Sci.11, 875–886.

    PubMed  Google Scholar 

  • Bernhardt, E. C., 1974: Processing of Thermoplastic Materials, p. 300. Huntington, N.Y.: R. E. Krieger Pub. Co.

    Google Scholar 

  • Berthold, C. H., 1982: Some aspects of the ultrastructural organization of peripheral myelinated axons in the cat. In: Axonal Transport (Weiss, D. G., ed.), pp. 40–54. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., Lightfoot, E. N., 1960: Transport Phenomena. New York: Wiley.

    Google Scholar 

  • Black, M. M., Lasek, R. J., 1980: Slow components of axonal transport: two cytoskeletal networks. J. Cell Biol.86, 616–623.

    PubMed  Google Scholar 

  • Breuer, A. C., Christian, C. N., Henkart, M., Nelson, P. G., 1975: Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J. Cell Biol.65, 562–576.

    PubMed  Google Scholar 

  • Brimijoin, S., 1979: On the kinetics and maximal capacity of the system for rapid axonal transport in mammalian neurones. J. Physiol.292, 325–337.

    PubMed  Google Scholar 

  • —,Olsen, J., Rosenson, R., 1979: Comparison of the temperature-dependence of rapid axonal transport and microtubules in nerves of the rabbit and bullfrog. J. Physiol.287, 303–314.

    PubMed  Google Scholar 

  • Burridge, K., Bray, D., 1975: Purification and structural analysis of myosins from brain and other non-muscle tissues. J. mol. Biol.99, 1–14.

    PubMed  Google Scholar 

  • Byers, M. R., 1974: Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res.75, 97–113.

    PubMed  Google Scholar 

  • Cancalon, P., 1979: Influence of temperature on the velocity and on the isotope profile of slowly transported labeled proteins. J. Neurochem.32, 997–1007.

    PubMed  Google Scholar 

  • Condeelis, J. S., 1981: Reciprocal interactions between the actin lattice and cell membrane. Neurosci. Res. Prog. Bull.19, 83–99.

    Google Scholar 

  • Cooper, P. D., Smith, R. S., 1974: The movement of optically detectable organelles in myelinated axons ofXenopus laevis. J. Physiol.242, 77–97.

    PubMed  Google Scholar 

  • Easton, D. M., 1971: Garfish olfactory nerve: easily accessible source of numerous, long, homogeneous, nonmyelinated axons. Science172, 952–955.

    PubMed  Google Scholar 

  • Forman, D. S., 1982: Saltatory organelle movement and the mechanism of fast axonal transport. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 234–240. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • —,Padjen, A. L., Siggins, G. R., 1975: Movement of organelles in living nerve fibres (Scientific film). National Audio Visual Center, Washington.

    Google Scholar 

  • — — —, 1977: Axonal transport of organelles visualized by light microscopy: cinemicrographic and computer analysis. Brain Res.136, 197–213.

    PubMed  Google Scholar 

  • Freed, J. J., Lebowitz, M. M., 1970: The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol.45, 334–354.

    Google Scholar 

  • Gatfield, P. D., Lowry, O. H., Schulz, D. W., Passoneau, J. V., 1966: Regional energy reserves in mouse brain and changes with ischaemia and anesthesia. J. Neurochem.13, 185–191.

    PubMed  Google Scholar 

  • Giddings, J. C., Fisher, S. R., Myers, M. N., 1978: Field-flow fractionation. One-phase chromatography for macromolecules and particles. Int. Laboratory, May/June1978, 15–34.

    Google Scholar 

  • Goldberg, D. J., Harris, D. A., Lubit, B. W., Schwartz, J. H., 1980: Analysis of the mechanism of fast axonal transport by intracellular injection of potentially inhibitory macromolecules: Evidence for a possible role of actin filaments. Proc. Natl. Acad. Sci. USA77, 7448–7452.

    PubMed  Google Scholar 

  • Goldman, R. D., Chojnacki, B., Goldman, A. E., Starger, J., Steinert, P., Talian, J., Whitman, M., Zackroff, R., 1981: Aspects of the cytoskeleton and cytomusculature of nonmuscle cells. Neurosci. Res. Prog. Bull.19, 59–82.

    Google Scholar 

  • Grafstein, B., Forman, D. S., 1980: Intracellular transport in neurons. Physiol. Rev.60, 1167–1283.

    PubMed  Google Scholar 

  • Green, L. S., Donoso, J. A., Heller-Bettinger, I. E., Samson, F. E., 1977: Axonal transport disturbances in vincristine-induced peripheral neuropathy. Ann. Neurol.1, 255–262.

    PubMed  Google Scholar 

  • Greengard, P., Ritchie, J. M., 1971: Metabolism and Function in Nerve Fibers. In: Handbook of Neurochemistry, Vol. 5 A (Lajtha, A., ed.), pp. 317–333. New York: Plenum Press.

    Google Scholar 

  • Griffin, J. W., Hoffman, P. N., Price, D. L., 1982: Axonal Transport in β,β′-iminodipropionitrile neuropathy. In: Axoplasmic Transport in Physiology and Pathology (Weiss, D. G., Gorio, A., eds.), pp. 109–118. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Griffith, L. M., Pollard, T. D., 1978: Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J. Cell Biol.78, 958–965.

    PubMed  Google Scholar 

  • Gross, G. W., 1973: A quantitative characterization of rapid axoplasmic transport in the C-fibers of the garfish olfactory nerve. Ph.D. Dissertation, Florida State University.

  • —, 1975: The microstream concept of axoplasmic and dendritic transport. Adv. Neurol.12, 283–296.

    PubMed  Google Scholar 

  • —,Beidler, L. M., 1975: A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J. Neurobiol.6, 213–232.

    PubMed  Google Scholar 

  • —,Kreutzberg, G. W., 1978: Rapid axoplasmic transport in the olfactory nerve of the pike: I. Basic transport parameters for proteins and amino acids. Brain Res.139, 65–76.

    PubMed  Google Scholar 

  • —,Stewart, G. H., Horwitz, B., 1980: Computer generation of typical axoplasmic transport isotope distributions using theoretical principles of liquid chromatography. Soc. Neurosci. Abstr.6, 503.

    Google Scholar 

  • —,Weiss, D. G., 1977: Subcellular fractionation of rapidly transported axonal material in olfactory nerve: evidence for a size-dependent molecule separation during transport. Neurosci. Lett.5, 15–20.

    Google Scholar 

  • — —, 1982: Theoretical considerations on rapid transport in low viscosity axonal regions. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 330–341. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Haak, R. A., Kleinhans, F. W., Ochs, S., 1976: The viscosity of mammalian nerve axoplasm measured by electron spin resonance. J. Physiol.263, 115–137.

    PubMed  Google Scholar 

  • Hall, S. M., Williams, P. L., 1970: Studies on the “incisures” of Schmidt and Lanterman. J. Cell Sci.6, 767–791.

    PubMed  Google Scholar 

  • Heilbrunn, L. V., 1956: The Dynamics of Living Protoplasm. New York: Academic Press.

    Google Scholar 

  • Heuser, J. E., Kirschner, M. W., 1980: Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J. Cell Biol.86, 212–234.

    PubMed  Google Scholar 

  • Hiebsch, R. R., Hales, D. D., Murphy, D. B., 1979: Identity and purification of the dynein-like ATP-ase on cytoplasmic microtubules. J. Cell Biol.83, 345 a.

    Google Scholar 

  • Holz, A., Weber, W., 1970: Periodisch auftretende Querstrukturen in Nervenfasern des Bulbes olfactorius der ElritzePhoxinus laevis. Experientia26, 1349–1350.

    PubMed  Google Scholar 

  • Hyams, J. S., Stebbings, H., 1977: The distribution and function of microtubules in nutritive tubes. Tissue & Cell9, 537–545.

    Google Scholar 

  • — —, 1979: Microtubule associated cytoplasmic transport. In: Microtubules (Roberts, K., Hyams, J. S., eds.), pp. 487–530. London: Academic Press.

    Google Scholar 

  • Isenberg, G., Schubert, P., Kreutzberg, G. W., 1980: Experimental approach to test the role of actin in axonal transport. Brain Res.194, 588–593.

    PubMed  Google Scholar 

  • Ishikawa, H., Tsukita, S., 1982: Morphological and functional correlates of axoplasmic transport. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 251–259. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Karlsson, J.-O., Sjöstrand, J., 1971: Synthesis, migration and turnover of protein in retinal ganglion cells. J. Neurochem.18, 749–767.

    PubMed  Google Scholar 

  • Kerkut, G. A., 1975: Axoplasmic transport. Comp. Biochem. Physiol.51 A, 701–704.

    Google Scholar 

  • Kirkpatrick, J. B., Bray, J. J., Palmer, S. M., 1972: Visualization of axoplasmic flow by Nomarski microscopy: comparison to rapid flow of radioactive proteins. Brain Res.43, 1–10.

    PubMed  Google Scholar 

  • Krammer, E. B., Zenker, W., 1975: Effekt von Zinkionen auf Struktur und Verteilung der Neurotubuli. Acta neuropath. (Berlin)31, 59–69.

    Google Scholar 

  • Kreutzberg, G. W., Gross, G. W., 1977: General morphology and axonal ultrastructure of the olfactory nerve of the pike,Esox lucius. Cell Tiss. Res.181, 443–457.

    Google Scholar 

  • LeBeux, Y. J., Willemot, J., 1975: An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, dendrites and the axon. Cell Tiss. Res.160, 1–36.

    Google Scholar 

  • Ledbetter, M. C., Porter, K. R., 1963: A “microtubule” in plant cell fine structure. J. Cell Biol.19, 239–250.

    Google Scholar 

  • Leestma, J. E., 1976: Velocity measurements of particulate neuroplasmic flow in organized mammalian CNS tissue cultures. J. Neurobiol.7, 173–183.

    PubMed  Google Scholar 

  • —,Freeman, S., 1977: Computer-assisted analysis of particulate axoplasmic flow in organized CNS tissue cultures. J. Neurobiol.8, 453–467.

    PubMed  Google Scholar 

  • Lieberman, A. R., 1971: Microtubule-associated smooth endoplasmic reticulum in the frog's brain. Z. Zellforsch.116, 564–577.

    PubMed  Google Scholar 

  • Marchisio, P. C., Gremo, F., Sjöstrand, J., 1975: Axonal transport in embryonic neurons. The possibility of a proximodistal axolemmal transfer of glycoproteins. Brain Res.85, 281–285.

    PubMed  Google Scholar 

  • McEwen, B. S., Grafstein, B., 1968: Fast and slow components in axonal transport of protein. J. Cell Biol.38, 494–508.

    PubMed  Google Scholar 

  • Mollenhauer, H. H., Morré, D. J., 1978: Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. Subcell. Biochem.11, 327–359.

    Google Scholar 

  • Muñoz-Martínez, E. J., Núñez, R., Sanderson, A., 1981: Axonal transport: a quantitative study of retained and transported protein fraction in the cat. J. Neurobiol.12, 15–26.

    PubMed  Google Scholar 

  • Ochs, S., 1972: Rate of fast axoplasmic transport in mammalian nerve fibers. J. Physiol.227, 627–645.

    PubMed  Google Scholar 

  • —, 1975: Retention and redistribution of proteins in mammalian nerve fibers by axoplasmic transport. J. Physiol.253, 459–475.

    PubMed  Google Scholar 

  • Oka, S., 1965: Theoretical considerations on the flow of blood through a capillary. In: Proceedings of the 4th International Congress on Rheology, Part 4 (Copley, A. L., ed.), pp. 93–98. New York: Interscience.

    Google Scholar 

  • Papasozomenos, S. Ch., Autilio-Gambetti, L., Gambetti, P., 1982: The IDPN axon: Rearrangement of axonal cytoskeleton and organelles following β,β′-iminodipropionitrile (IDPN) intoxication. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 241–250. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Peracchia, C., 1970: A system of parallel septa in crayfish nerve fibers. J. Cell Biol.44, 125–133.

    PubMed  Google Scholar 

  • Pollard, T. D., 1981: Which organelles are necessary for fast neuronal transport? Neurosci. Res. Prog. Bull.20, 92–97.

    Google Scholar 

  • Porter, K. R., Byers, H. R., Ellisman, M. H., 1979: The cytoskeleton. In: The Neurosciences, 4th Study Program (Schmitt, F. O., Worden, F. G., eds.), pp. 703–722. Cambridge: MIT Press.

    Google Scholar 

  • Prus, K., Wallin, M., 1982: Microtubule-associated ATPase: Fact or artifact? In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 91–98. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Raine, C. S., Ghetti, B., Shelanski, M. L., 1971: On the association between microtubules and mitochondria within axons. Brain Res.34, 389–393.

    PubMed  Google Scholar 

  • Rebhun, L. I., 1972: Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int. Rev. Cytol.32, 93–137.

    PubMed  Google Scholar 

  • —,Sander, G., 1971: Electron microscope studies of frozen-substituted marine eggs. III. Structure of the mitotic apparatus of the first meiotic division. Am. J. Anat.130, 35–54.

    PubMed  Google Scholar 

  • Rubinson, K. A., Baker, P. F., 1979: The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium. Proc. Roy. Soc. Lond.B 205, 323–345.

    Google Scholar 

  • Schwartz, J. H., 1979: Axonal transport: components, mechanisms and specificity. Annu. Rev. Neurosci.2, 467–504.

    PubMed  Google Scholar 

  • Segel, I. H., 1967: Phosphate bond energies. In: The Encyclopedia of Biochemistry, pp. 642–647. New York: Reinhold.

    Google Scholar 

  • Shaw, H. G., Osborne, M., Weber, K., 1981: An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin, and glial fibrillary acidic protein within the adult rat brain. Eur. J. Cell Biol.26, 68–82.

    PubMed  Google Scholar 

  • Smith, D. S., Järlfors, U., Cameron, B. F., 1975: Morphological evidence for the participation of microtubules in axonal transport. Ann. N.Y. Acad. Sci.253, 472–506.

    PubMed  Google Scholar 

  • Smith, R. S., 1973: Microtubule and neurofilament densities in amphibian spinal root nerve fibers: Relationship to axoplasmic transport. Can. J. Physiol. Pharmacol.51, 798–806.

    PubMed  Google Scholar 

  • —, 1978: Axonal inclusions in the crabHemigrapsus nudus. J. Neurocytol.7, 611–621.

    PubMed  Google Scholar 

  • —, 1980: The short term accummulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J. Neurocytol.9, 39–65.

    PubMed  Google Scholar 

  • —,Koles, Z. J., 1976: Mean velocity of optically detected intra-axonal particles measured by a cross-correlation method. Can. J. Physiol. Pharmacol.54, 859–869.

    PubMed  Google Scholar 

  • —,McLeod, K. D., 1979: Unusual particle trajectories and structural arrangements in myelinated nerve fibers. Can. J. Physiol. Pharmacol.57, 1182–1186.

    PubMed  Google Scholar 

  • Soifer, D., Csosnek, H. H., Mack, K., Wisniewski, H. M., 1982: Properties and dynamics of neurofilament proteins. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 64–72. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Spencer, P. S., Griffin, J. W., 1982: Disruption of axoplasmic transport by neurotoxic agents. The 2,5-hexanedione model. In: Axoplasmic Transport in Physiology and Pathology (Weiss, D. G., Gorio, A., eds.), pp. 92–103. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Stebbings, H., Bennett, C. E., 1975: The sleeve element of microtubules. In: Microtubules and Microtubule Inhibitors (Borgers, M., De Brabander, M., eds.), pp. 35–45. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • —,Willison, J. H. M., 1973: Structure of microtubules: a study of freeze-etched and negatively stained microtubules from the ovaries ofNotonecta. Z. Zellforsch.138, 387–396.

    PubMed  Google Scholar 

  • Stewart, G. H., Horwitz, B., Gross, G. W., 1982: A chromatographic model of axoplasmic transport. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 414–422. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Taylor, D. L., Condeelis, J. S., 1979: Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol.56, 57–144.

    PubMed  Google Scholar 

  • Tsukita, S., Ishikawa, H., 1980: The movement of membraneous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J. Cell Biol.84, 513–530.

    PubMed  Google Scholar 

  • — —, 1981: The cytoskeleton in myelinated axons: Serial section study. Biomed. Res.2, 424–437.

    Google Scholar 

  • Weiss, D. G., Gross, G. W., 1982: The microstream hypothesis of axoplasmic transport: characteristics, predictions, and compatibility with data. In: Axoplasmic Transport (Weiss, D. G., ed.), pp. 362–383. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., Yamada, K. M., 1971: Microfilaments in cellular and developmental processes. Science171, 135–143.

    PubMed  Google Scholar 

  • Willard, M., Cowan, W. M., Vagelos, P. R., 1974: The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc. Natl. Acad. Sci. USA71, 2183–2187.

    PubMed  Google Scholar 

  • Yokoyama, K., Tsukita, S., Ishikawa, H., Kurokawa, M., 1980: Early changes in the neuronal cytoskeleton caused by β,β′-iminodipropionitrile: selective impairment of neurofilament polypeptides. Biomed. Res.1, 537–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, G.W., Weiss, D.G. Intracellular transport in axonal microtubular domains II. Velocity profile and energetics of circumtubular flow. Protoplasma 114, 198–209 (1983). https://doi.org/10.1007/BF01283701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01283701

Keywords

Navigation