Skip to main content
Log in

Does Ca2+ channel blockade modulate the antidepressant-induced changes in mechanisms of adrenergic transduction?

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

We investigated how the L-type calcium channel blockade (CCB) with nifedipine affects the cyclic AMP responses to noradrenaline or isoproterenol in cerebral cortical slices from rats receiving antidepressant treatments that induce (electroconvulsive shock, imipramine) or do not induce (amitriptyline) β-downregulation. To assess the role of protein kinase C (PKC) in receptor crosstalk under CCB conditions, the cyclic AMP responses were tested also in the presence of a PKC activator, TPA. CCB alone induced no changes, but modulated the action of those antidepressants that down regulate the β-adrenergic system. Chronic ECS and imipramine treatments were differently affected. ECS, under conditions of CCB, down regulated the response to isoproterenol in the presence of TPA, while imipramine ceased to block the TPA-potentiation of cyclic AMP responses. Thus, CCB affects the processes related to the antidepressant-induced changes on the crosstalk between α1- and β-adrenergic receptors, depending on the specific properties of the antidepressant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antkiewicz-Michaluk L, Michaluk J, Romańska I, Vetulani J (1990) Effect of repetitive electroconvulsive treatment on sensitivity to pain and on [3H]nitrendipine binding sites in cortical and hippocampal membranes. Psychopharmacology 101: 240–243

    PubMed  Google Scholar 

  • Antkiewicz-Michaluk L, Romańska I, Michaluk J, Vetulani J (1991) Role of calcium channels in effects of antidepressant drugs on responsiveness to pain. Psychopharmacology 105: 269–274

    PubMed  Google Scholar 

  • Azzi A, Boscoboinik D, Hensey C (1992) The protein kinase C family. Eur J Biochem 208: 547–557

    PubMed  Google Scholar 

  • Banarjee SP, Kung LS, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268: 455–456

    PubMed  Google Scholar 

  • Bazzi MD, Nelsestuen GL (1987) Role of substrate in determining the phospholipid specificity of protein kinase C activation. Biochemistry 26: 5002–5008

    PubMed  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278: 464–466

    PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1990) Inositol phosphates and cell signaling. Nature 341: 197–205

    Google Scholar 

  • Birnbaumer LG (1990) Proteins in signal transduction. Annu Rev Pharmacol Toxicol 30: 675–705

    PubMed  Google Scholar 

  • Borbe HO, Zierenberg O (1985) Amitriptylinoxide: receptor-binding profile compared with other antidepressant drugs. Pharmacopsychiatry 18: 314–319

    PubMed  Google Scholar 

  • Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1- and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 262: 3106–3113

    PubMed  Google Scholar 

  • Brunello N, Barbaccia ML, Chuang DM, Costa E (1982) Down-regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology 21: 114–1149

    Google Scholar 

  • Czyrak A, Mogilnicka E, Maj J (1989) Dihydropyridine calcium channel antagonists as antidepressant drugs in mice and rats. Neuropharmacology 28: 229–233

    PubMed  Google Scholar 

  • Daly JW, Padgett W, Creveling CR, Cantacuzene D, Kirk KL (1980) Fluoroepinephrines: specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating system in rat slices. J Pharmacol Exp Ther 212: 382–389

    PubMed  Google Scholar 

  • De Lorenzo RJ (1982) Calmodulin modulation of calcium signal in synaptic transmission. In: Bradford HF (ed) Neurotransmitter interaction and compartmentation. Plenum, New York, pp 101–120

    Google Scholar 

  • Delgado-Escueta AV, Victor S, Davidson D (1980) The effects of electroshock convulsion on calcium transport within synaptic terminals. J Neurochem 34: 1140–1148

    PubMed  Google Scholar 

  • Duman RS, Enna SJ (1987) Modulation of receptor-mediated cyclic AMP production in brain. Neuropharmacology 26: 981–986

    PubMed  Google Scholar 

  • Geoffroy M, Mogilnicka E, Nielsen M, Rafaelsen OJ (1988) Effect of nifedipine on the shuttlebox escape deficit induced by inescapable shock in the rat. Eur J Pharmacol 154: 277–283

    PubMed  Google Scholar 

  • Grega DS, Werz MA, Macdonald RL (1987) Forskolin and phorbol esters reduce the same potassium conductance of mouse neurons in culture. Science 235: 345–348

    PubMed  Google Scholar 

  • Hall H, Ögren SO (1981) Effects of antidepressant drugs on different receptors in the brain. Eur J Pharmacol 70: 393–407

    PubMed  Google Scholar 

  • Hullett FJ, Potkin SG, Levy AB, Ciasca R (1988) Depression associated with nifedipine-induced calcium channel blockade. Am J Psychiatry 145: 1277–1279

    PubMed  Google Scholar 

  • Höschl C, Kozeny J (1988) Verapamil in affective disorders a controlled, double-blind study. Biol Psychiatry 25: 128–140

    Google Scholar 

  • Janowsky A, Okada F, Manier DH, Applegate CD, Sulser F, Steranka LR (1982) Role of serotonergic input in the regulation of the beta-adrenergic receptor-coupled adenylate cyclase system. Science 218: 900–901

    PubMed  Google Scholar 

  • Karbon EW, Shenolikar S, Enna SJ (1986) Phorbol esters enhance neurotransmitter-stimulated cyclic AMP production in rat brain slices. J Neurochem 47: 1566–1575

    PubMed  Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151: 431–437

    PubMed  Google Scholar 

  • Kostowski W, Dyr W, Puciłowski O (1990) Activity of diltiazem and nifedipine in some animal models of depression. Pol J Pharmacol Pharm 42: 121–127

    PubMed  Google Scholar 

  • Lasoń W, Przewłocki R (1993) The effect of chronic treatment with imipramine on the G roteins mRNA level in the rat hippocampus — an interaction with a calcium channel antagonist. Pol J Pharmacol 45: 219–226

    PubMed  Google Scholar 

  • Leeb-Lundberg LMF, Cotecchia S, Lomasney JW, DeBernardis JF, Lefkowitz RJ, Caron MG (1985) Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci USA 82: 5651–5655

    PubMed  Google Scholar 

  • Li PP, Warsh JJ, Sibony D, Chiu A (1988) Assessment of rat brain alpha 1-adrenoceptor binding and activation of inositol phospholipid turnover following chronic imipramine treatment. Neurochem Res 13: 1111–1118

    PubMed  Google Scholar 

  • Manji HK, Lenox RH (1994) Long-term action of lithium: a role for transcriptional and postranscriptional factors regulated by protein kinase C. Synapse 16: 11–28

    PubMed  Google Scholar 

  • Martin P, Laurent S, Massol J, Childs M, Puech AJ (1989) Effects of dihydropyridine drugs on reversal by imipramine of helpless behavior in rats. Eur J Pharmacol 162: 185–188

    PubMed  Google Scholar 

  • Middlemiss D (1985) The calcium channel activator, Bay K8644, enhances K + evoked efflux of acetylcholine and noradrenaline from brain slices. Naunyn Schmiedebergs Arch Pharmacol 331: 114–116

    PubMed  Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52

    PubMed  Google Scholar 

  • Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 138: 413–416

    PubMed  Google Scholar 

  • Nalepa I (1994) The effect of psychotropic drugs on the interaction of protein kinase C with second messenger systems in the rat cerebral cortex. Pol J Pharmacol 46: 1–14

    PubMed  Google Scholar 

  • Nalepa I, Vetulani J (1991a) Involvement of protein kinase C in the mechanisms of in vitro effects of imipramine on generation of second messengers by noradrenaline in the cerebral cortical slices of the rat. Neuroscience 44: 585–590

    PubMed  Google Scholar 

  • Nalepa I, Vetulani J (1991b) Different mechanisms of β-adrenoceptor downregulation by chronic imipramine and electroconvulsive treatment: possible role for protein kinase C. J Neurochem 57: 904–910

    PubMed  Google Scholar 

  • Nalepa I, Vetulani J (1993a) Enhancement of the responsiveness of cortical adrenergic receptors by chronic administration of an atypical antidepressant citalopram. J Neurochem 60: 2029–2035

    PubMed  Google Scholar 

  • Nalepa I, Vetulani J (1993b) The effect of calcium channel blockade on the action of chronic ECT and imipramine on responses of α- and β-adrenoceptors in the rat cerebral cortex. Pol J Pharm 45: 201–205

    Google Scholar 

  • Nalepa I, Vetulani J (1994) The responsiveness of cerebral cortical adrenergic receptors after chronic administration of atypical antidepressant mianserin. J Psychiat Neurosci 19: 120–128

    Google Scholar 

  • Nalepa I, Chalecka-Franaszek E, Vetulani J (1993) The antagonistic effect of separate and consecutive chronic treatment with imipramine and ECS on the regulation of α1-adrenoceptor activity by protein kinase C. Pol J Pharmacol 45: 521–532

    PubMed  Google Scholar 

  • Nalepa I, Chalecka-Franaszek E, Vetulani J (1996) Modulation by mianserin pretreatment of the chronic electroconvulsive shock effects on the adrenergic system in the cerebral cortex of the rat. Human Psychopharmacol Clin Exp 11: 273–282

    Google Scholar 

  • Nowak G, Przegaliński E (1988) Long-term effect of antidepressant drugs and electroconvulsive shock on brain α1-adrenoceptors following destruction of noradrenergic or serotonergic nerve terminals. Pol J Pharmacol Pharm 40: 393–400

    PubMed  Google Scholar 

  • Reuter H, Stevens CF, Tsiern RW, Yellen G (1982) Properties of single calcium channels in cardiac cell culture. Nature 297: 501–504

    PubMed  Google Scholar 

  • Rouot B, Brabet P, Homburger V, Toutant M, Bockaert J (1987) Go a major brain GTP binding protein in search of a function: purification, immunological and biochemical characteristics. Biochimie 69: 339–349

    PubMed  Google Scholar 

  • Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Anal Biochem 58: 541–548

    PubMed  Google Scholar 

  • Schatzman KC, Wise BC, Kuo JF (1981) Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem Biophys Res Commun 98: 669–676

    PubMed  Google Scholar 

  • Shimizu H, Daly J, Crevelling CR (1969) A radioisotopic method for measuring formation of adenosine 3′,5′-cyclic monophosphate in incubated slices of brain. J Neurochem 16: 1609–1619

    PubMed  Google Scholar 

  • Snoek GT, Feijen A, Hage WJ, Van Rotterdam W, De Laat SW (1988) The role of hydrophobic interaction in the phospholipid-dependent activation of protein kinase C. Biochem J 255: 629–637

    PubMed  Google Scholar 

  • Sugden D, Klein DC (1988) Activators of protein kinase C act at a postreceptor site to amplify cyclic AMP production in rat pinealocytes. J Neurochem 50: 149–155

    PubMed  Google Scholar 

  • Sullivan R, Melnick DA, Malech HL, Meshulam T, Simons ER, Lazzari KG, Proto PJ, Gadenne AS, Leavitt JL, Griffin JD (1987) The effects of phorbol myristate acetate and chemotactic peptide on transmembrane potentials and cytosolic free calcium in mature granulocytes evolve sequentially as the cells differentiate. J Biol Chem 262: 1274–1281

    PubMed  Google Scholar 

  • Vanecek J, Sugden D, Weller JL, Klein DC (1986) See-saw signal processing in pinealocytes involves reciprocal changes in the alpha 1-adrenergic component of the cyclic GMP response and the beta-adrenergic component of the cyclic AMP response. J Neurochem 47 (3): 678–686

    PubMed  Google Scholar 

  • Vetulani J (1991) The development of our understanding of the mechanism of action of antidepressant drugs. Pol J Pharmacol Pharm 43: 323–338

    PubMed  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatment reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature 257: 495–496

    PubMed  Google Scholar 

  • Vetulani J, Nalepa I (1996) The effect of chronic administration of amitriptyline on the effects of subsequent electroconvulsive treatment on responsiveness of α1- and β-adrenoceptors in the rat cortical slices. J Neural Transm 103: 363–376

    PubMed  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pilc A (1983) Chronic electroconvulsive treatment enhances the density of [3H]prazosin binding sites in the central nervous system of the rat. Brain Res 27: 392–395

    Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A (1984) Chronic administration of antidepres sant drugs increases the density of cortical3H-prazosin binding sites in the rat. Brain Res 310: 360–362

    PubMed  Google Scholar 

  • Wise H, Halliday CA (1985) Why is amitriptyline much weaker than desipramine at decreasing β-adrenoceptor numbers? Eur J Pharmacol 110: 137–141

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalepa, I., Kowalska, M., Kreiner, G. et al. Does Ca2+ channel blockade modulate the antidepressant-induced changes in mechanisms of adrenergic transduction?. J. Neural Transmission 104, 535–547 (1997). https://doi.org/10.1007/BF01277670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277670

Keywords

Navigation