Skip to main content
Log in

Molecular cloning of a gene involved in methotrexate uptake by DNA-mediated gene transfer

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from a wild-type Chinese hamster ovary genomic cosmid library. Primary and secondary transfectants, which contain a limited number of cosmid sequences, have been shown to regain methotrexate sensitivity and to take up methotrexate. Furthermore, the DNA from three cosmid clones, isolated from a primary methotrexate-sensitive transfectant, after transfection rescued the methotrexate-resistant phenotype at a high frequency. Restriction endonuclease analysis of the DNA of these cosmid clones indicated that they overlapped extensively and shared two regions of Chinese hamster ovary DNA of 6.6 kb and 20.6 kb. These observations indicate that a gene involved in methotrexate uptake is contained in its entirety within one of these regions. This is the first report of the functional molecular cloning of a gene involved in methotrexate uptake. A general strategy is also described for screening large cosmid libraries from primary transfectants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Goldman, I.D., Lichtenstein, N.S., and Oliverio, V.T. (1968).J. Biol. Chem. 2445007–5017.

    Google Scholar 

  2. Goldman, I.D. (1969).J. Biol. Chem. 2443779–3785.

    Google Scholar 

  3. Heunnekens, F.M., Vitols, K.S., and Henderson, G.B. (1978).Adv. Enzymol. 47313–346.

    Google Scholar 

  4. Kamen, B.A., and Capdevilla, A. (1986).Proc. Natl. Acad. Sci. U.S.A. 835983–5987.

    Google Scholar 

  5. Kamen, B.A., Wang, M.-T., Streckfuss, A.J., Peryea, X., and Anderson, R.G.W. (1988).J. Biol. Chem. 26313602–13609.

    Google Scholar 

  6. Rothberg, K.G., Ying, Y., Kolhouse, J.F., Kamen, B.A., and Anderson, R.G.W. (1990).J. Cell Biol. 110637–649.

    Google Scholar 

  7. Kamen, B.A., Smith, A.K., and Anderson, R.G.W. (1991).J. Clin. Invest. 871442–1449.

    Google Scholar 

  8. da Costa, M., and Rothenberg, S.P. (1988).Biochim. Biophys. Acta 939533–541.

    Google Scholar 

  9. Elwood, P.C., Kane, M.A., Portillo, R.M., and Kolhouse, J.F. (1986).J. Biol. Chem. 26115416–15423.

    Google Scholar 

  10. Sadasivan, E., Rothenberg, S.P., da Costa, M., and Brink, L. (1986).Biochim. Biophys. Acta 882311–321.

    Google Scholar 

  11. Sadasivan, E., da Costa, M., Rothenberg, S.P., and Brink, L. (1987).Biochim. Biophys. Acta 92536–47.

    Google Scholar 

  12. Jansen, G., Westerhoff, G.R., Jarmuszewski, J.A., Kathmann, G.R., and Schornagel, J.H. (1990).J. Biol. Chem. 26518272–18277.

    Google Scholar 

  13. Matherly, L.H., Czajkowski, C.A., and Angeles, S.M. (1991).Cancer Res. 513420–3426.

    Google Scholar 

  14. Price, E.M., and Freisheim, J.H. (1987).Biochemistry 264757–4763.

    Google Scholar 

  15. Price, E.M., Ratnam, M., Rodeman, K.M., and Freisheim, J.H. (1988).Biochemistry 277853–7858.

    Google Scholar 

  16. Sirotnak, F.M. (1985).Cancer Res. 453992–4000.

    Google Scholar 

  17. Sirotnak, F.M., Goutas, L.J., Jacobsen, D.M., Mines, L.S., Barrueco, J.R., Gaumont, Y., and Kisliuk, R.L. (1987).Biochem. Pharmacol. 361659–1667.

    Google Scholar 

  18. Yang, C.-H., Dembo, M. and Sirotnak, F.M. (1983).J. Membr. Biol. 7511–20.

    Google Scholar 

  19. Underhill, T.M., and Flintoff, W.F. (1989).Somat. Cell Mol. Genet. 1549–59.

    Google Scholar 

  20. Brigle, K.E., Westin, E.H., Houghton, M.T., and Goldman, I.D. (1991).J. Biol. Chem. 26617243–17249.

    Google Scholar 

  21. Elwood, P.C. (1989).J. Biol. Chem. 26414893–14901.

    Google Scholar 

  22. Ratham, M., Marquardt, H., Duhring, J.L., and Freisheim, J.H. (1989).Biochemistry 288249–8254.

    Google Scholar 

  23. Sadasivan, E., and Rothenberg, S.P. (1989).J. Biol. Chem. 2645806–5811.

    Google Scholar 

  24. Underhill, T.M., and Flintoff, W.F. (1989).Mol. Cell Biol. 91754–1758.

    Google Scholar 

  25. Flintoff, W.F., and Nagainis, C.R. (1983).Arch. Biochem. Biophys. 223433–440.

    Google Scholar 

  26. Flintoff, W.F., Davidson, S.V., and Siminovitch, L. (1976).Somat. Cell Genet. 2245–261.

    Google Scholar 

  27. Flintoff, W.F., Spindler, S.M., and Siminovitch, L. (1976).In Vitro 12749–757.

    Google Scholar 

  28. Bradford, M. (1976).Anal. Biochem. 72248–254.

    Google Scholar 

  29. Wahl, G.M., Lewis, K.A., Ruiz, J.C., Rothenberg, B., Zhao, J., and Evans, G.A. (1987).Proc. Natl. Acad. Sci. U.S.A. 842160–2164.

    Google Scholar 

  30. Souther, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 1327–341.

    Google Scholar 

  31. Gross-Bellard, M., Oudet, P., and Chambon, P. (1978).J. Biochem. 3632–38.

    Google Scholar 

  32. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

    Google Scholar 

  33. DiLella, A.G., and Woo, S.L.C. (1987).Methods Enzymol. 152199–210.

    Google Scholar 

  34. Southern, E.M. (1975).J. Mol. Biol. 98503–517.

    Google Scholar 

  35. Feinberg, A.P., and Vogelstein, B. (1983).Anal Biochem. 1326–13.

    Google Scholar 

  36. Lowy, I., Pellicer, A., Jackson, J.F., Sim, G-K., Silverstein, S., and Axel, R. (1980).Cell 22817–823.

    Google Scholar 

  37. Schatz, D.G., Oettinger, M.A., and Baltimore, D. (1989).Cell 591035–1048.

    Google Scholar 

  38. Sekiguchi, T., Yoshida, M.C., Sekiguchi, M., and Nishimoto, T. (1987).Exp. Cell Res. 169395–407.

    Google Scholar 

  39. Shaham, M., Adler, B., Ganguly, S., and Chaganti, R.S.K. (1987).Proc. Natl. Acad. Sci. U.S.A. 845853–5857.

    Google Scholar 

  40. Tanaka, K., Satokata, I., Ogita, Z., Uchida, T., and Okada, Y. (1989).Proc. Natl. Acad. Sci. U.S.A. 865512–5516.

    Google Scholar 

  41. Thompson, L.H., Brookman, K.W., Jones, N.J., Allen, S.A., and Carrano, A.V. (1990).Mol. Cell Biol. 106160–6171.

    Google Scholar 

  42. Troelstra, C., Odijk, H., De Wit, J., Westerveld, A., Thomspson, L.H., Bootsma, D., and Hoeijmakers, J.H.J. (1990).Mol. Cell Biol. 105806–5813.

    Google Scholar 

  43. Watanabe, M., Furuno, N., Goebl, M., Go, M., Miyauchi, K., Sekiguchi, T., Basilico, C., and Nishimito, T. (1991).J. Cell Sci. 10035–43.

    Google Scholar 

  44. Weber, C.A., Salazar, E.P., Stewart, S.A., and Thompson, L.H. (1988).Mol. Cell Biol. 81137–1146.

    Google Scholar 

  45. Weeda, G., Van Ham, R.C.A., Masurel, R., Westerveld, A., Okijk, H., De Wit, J., Bootsma, D., Van Der Eb, A.J., and Hoeijmakers, J.H. (1990).Mol. Cell Biol. 102570–2581.

    Google Scholar 

  46. Westerveld, A., Hoeijmakers, J.H.J., van Duin, M., de Wit, J., Odijk, H., Pastink, A., Wood, R.D., and Bootsma, D. (1984).Nature 310425–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underhill, T.M., Williams, F.M.R., Murray, R.C. et al. Molecular cloning of a gene involved in methotrexate uptake by DNA-mediated gene transfer. Somat Cell Mol Genet 18, 337–349 (1992). https://doi.org/10.1007/BF01235757

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235757

Keywords

Navigation