Skip to main content
Log in

Behaviour of spiral vortices on a rotating cone in axial flow

  • Contribted Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The purpose of the present paper is to investigate experimentally in detail the boundary layer transition process and the behaviour of spiral vortices appearing in the transition range of the boundary layer on a 30°-cone, rotating in axial flow. Counterrotating spiral vortices in the transition range are visualized with a white smoke method, and observed the time dependent behaviour of them using a drum camera and a light sheet illumination method with a stroboscope flash light. The light passes a slit in order to illuminate only a thin sheet in the flow. With this method, the time dependent growing up and breaking down process of these spiral vortices is greatly clarified. A hot wire anemometer is also used for measuring in the flow field quantitatively. The results show that the spiral vortices are generated in the thin region of the steep shear velocity gradients near the wall. As the vortices grow up in z-direction, they are strongly distorted by the mean velocity field there, and finally they are teared off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Illingworth, C. R.: The laminar boundary layers of a rotating body of revolution. Phil. Mag.44, 389–403 (1953).

    Google Scholar 

  2. Stuart, J. T.: Hydrodynamic stability. In: Laminar boundary layers (Rosenhead, L., ed.), p. 543. Oxford Univ. Press 1963.

  3. Tien, C. L., Campbell, D. T.: Heat and mass transfer from rotating cones. J. Fluid Mech.17, 105–112 (1963).

    Google Scholar 

  4. Tien, C. L., Tsuji, I. J.: A theoretical analysis of laminar forced flow and heat transfer about a rotating cone. Trans. A.S.M.E. C, J. Heat Transfer87, 184–190 (1965).

    Google Scholar 

  5. Salzberg, J., Kezios, S. P.: Mass transfer from a rotating cone in axisymmetric flow. Trans. A.S.M.E. C, J. Heat Transfer87, 469–476 (1965).

    Google Scholar 

  6. Kreith, F.: Frictional drag and convective heat transfer of rotating cones in mixed and turbulent flow. Proc. Heat Transfer and Fluid Mech. Inst. (Saad, M. A., Miller, J. A., eds.), pp. 29–43. Stanford Univ. Press 1966.

  7. Koh, J. C. Y., Price, J. F.: Non-similar boundary-layer heat transfer of a rotating cone in forced flow. Trans. A.S.M.E. C, J. Heat Transfer89, 139–145 (1967).

    Google Scholar 

  8. Kappesser, U., Gref, R., Cornet, I.: Mass transfer to rotating cones. Appl. Sci. Res.28, 442–452 (1973).

    Google Scholar 

  9. Okamoto, T., Yagita, M., Kamijima, Y.: Experimental investigation on the boundarylayer flow over rotating cone-cylinder body in a uniform stream. Bull. Japan Soc. Mech. Engrs19, 930–937 (1976).

    Google Scholar 

  10. Mueller, T. J., Nelson, R. C., Kegelman, J. T., Morkovin, M. V.: Smoke visualization of boundary-layer transition on a spinning axisymmetric body. A.I.A.A.J.19, 1607–1608 (1981).

    Google Scholar 

  11. Kobayashi, R., Kohama, Y., Kurosawa, M.: Boundary layer transition on a rotating cone in axial flow. J. Fluid Mech.127, 341–352 (1983).

    Google Scholar 

  12. Kobayashi, R., Izumi, H.: Boundary layer transition on a rotating cone in still fluid. J. Fluid Mech.127, 353–364 (1983).

    Google Scholar 

  13. Gregory, N., Stuart, J. T., Walker, W. S.: On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans.248, 155–199 (1955).

    Google Scholar 

  14. Kobayashi, R., Kohama, Y., Takamadate, Ch.: Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mech.35, 71–82 (1980).

    Google Scholar 

  15. Kohama, Y.: Study on boundary layer transition of a rotating disk. Acta Mech.50, 193–199 (1983).

    Google Scholar 

  16. Sawatzki, O.: Das Strömungsfeld um eine rotierende Kurgel. Acta Mech.9, 159–214 (1970).

    Google Scholar 

  17. Wimmer, M.: Experimentelle Untersuchungen der Strömung im Spalt zwischen zwei konzentrischen Kugeln, die beide um einen gemeinsamen Durchmesser rotieren. Diss., Fakultät für Masch. der Univ. Karlsruhe (TH), 1974.

  18. Kohama, Y., Kobayashi, R.: Behaviour of spiral vortices on rotating axisymmetric bodies. Rep. Inst. High Speed Mech., Tohoku Univ.47, 27–38 (1983).

    Google Scholar 

  19. Kohama, Y., Kobayashi, R.: Boundary layer transition and the behaviour of spiral vortices on rotating spheres. J. Fluid Mech.137, 153–164 (1983).

    Google Scholar 

  20. Kohama, Y., Kobayashi, R., Ito, H.: Performance of the small low-turbulence wind tunnel. Tohoku University. Mem. Inst. High Speed Mech., Tohoku Univ.48, 119–142 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohama, Y. Behaviour of spiral vortices on a rotating cone in axial flow. Acta Mechanica 51, 105–117 (1984). https://doi.org/10.1007/BF01177066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177066

Keywords

Navigation