Skip to main content
Log in

The specificity of bacterial siderophore receptors probed by bioassays

  • Original Articles
  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

The ability to utilize siderophores of bacterial and fungal origin has been studied in wild-type and mutant strains of the enterobacterial generaSalmonella, Escherichia, Shigella, Moellerella, Klebsiella, Enterobacter, Hafnia, Pantoea, Ewingella, Tatumella, Yersinia, and in the non-entericsAeromonas, Pseudomonas andAureobacterium. Although only a few representative strains were tested, the results show characteristic genus-specific differences in the utilization of hydroxamate and catecholate siderophores. Moreover, the different response to structural alterations of certain siderophore classes by some wild-type and mutant strains points to variable interacting receptor domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barghouthi S, Young R, Arceneaux JEL, Byers BR (1989) Physiological control of amonabactin biosynthesis inAeromonas hydrophila. Biol Metals 2:155–160

    Google Scholar 

  • Barghouthi S, Payne S, Arceneaux J, Byers R (1990) Cloning and mutagenesis of an Aeromonas hydrophila siderophore gene. Abstract, 2nd International Symposium on Iron Transport, Storage and Metabolism, University of Texas, Austin

    Google Scholar 

  • Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principal siderophore ofErwinia herbicola (Enterobacter agglomerans). Biol Metals 1:51–56

    Google Scholar 

  • Berner I, Winkelmann G (1990) Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein FoxA inErwinia herbicola (Enterobacter agglomerans). Biol Metals 2:197–202

    Google Scholar 

  • Berner I, Yakirevitch P, Libman J, Shanzer A, Winkelmann G (1991) Chiral linear hydroxamates as biomimetic analogues of ferrioxamine and coprogen and their use in probing siderophore receptor specificity in bacteria and fungi. Biol Metals 4:186–191

    Google Scholar 

  • Bitter W, Marugg JD, deWeger LA, Tommassen J, Weisbeek PJ (1991) The ferric-pseudobactin receptor PupA ofPseudomonas putida WCS358: homology to TonB-dependentEscherichia coli receptors and specificity of the protein. Mol Microbiol 5:647–655

    Google Scholar 

  • Bossier P, Verstraete W (1986a) Detection of siderophores in soil by a direct bioassay. Soil Biol Biochem 18:482–487

    Google Scholar 

  • Bossier P, Verstraete W (1986b) Ecology ofArthrobacter-JG9-detectable hydroxamate siderophores in soils. Soil Biol Biochem 18:487–492

    Google Scholar 

  • Braun V (1981)Escherichia coli cells containing the plasmid ColV produce the iron ionophore aerobactin. FEMS Microbiol Lett 11:225–228

    Google Scholar 

  • Braun V, Günter K, Hantke K (1991) Transport of iron across the outer membrane. Biol Metals 4:14–22

    Google Scholar 

  • Braun V, Hantke K, Stauder W (1977) Identification of the Sid outer membrane receptor protein inSalmonella typhimurium SL1027. Mol Gen Genet 155:227–229

    Google Scholar 

  • Carbonetti N, Williams PH (1984) A cluster of five genes specifying the aeropbactin iron uptake system of plasmid ColV-K30. Infect Immun 46:7–12

    Google Scholar 

  • Emery T (1986) Exchange of iron by gallium in siderophores. Biochemistry 25:4629–4633

    Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer ofEnterobacter agglomerans (Beijerinck 1988) Ewing and Five 1972 to Pantoea gen. nov. asPantoea agglomerans comb. nov. and description ofPantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Google Scholar 

  • Hall RM, Ratledge C (1987) Exochelin-mediated iron acquisition by the leprosy bacillus,Mycobacterium leprae. J Gen Microbiol 133:193–199

    Google Scholar 

  • Hall RM, Sritharan M, Messenger AJM, Ratledge C (1987) Iron transport inMycobacterium smegmatis: occurrence of iron-regulated envelope proteins as potential receptors for iron uptake. J Gen Microbiol 133:2107–2114

    Google Scholar 

  • Hancock REW, Hantke K, Braun V (1977) Iron transport inEscherichia coli K12. 2,3-Dihydroxybenzoate-promoted iron uptake. Arch Microbiol 114:231–239

    Google Scholar 

  • Hantke K (1990) Dihydroxybenzoylserine — a siderophore forE. coli. FEMS Microbiol Lett 67:5–8

    Google Scholar 

  • Hartmann A, Braun V (1979) Uptake and conversion of the antibiotic albomycin byEscherichia coli K12. Eur J Biochem 99:517–524

    Google Scholar 

  • Heesemann J (1987) Chromosomal-encoded siderophores are required for mouse virulence of enteropathogenicYersinia species. FEMS Microbiol Lett 48:229–233

    Google Scholar 

  • Hohnadel D, Meyer J-M (1988) Specificity of pyoverdine-mediated iron uptake among fluorescentPseudomonas strains. J Bacteriol 170:4865–4873

    Google Scholar 

  • Konetschny-Rape S, Jung G, Huschka H, Winkelmann G (1988) Isolation and identification of the principal siderophore of the plant pathogenic fungusBotrytis cinerea. Biol Metals 1:90–98

    Google Scholar 

  • Konetschny-Rape S, Jung G, Meiwes J, Zähner H (1990) Staphyloferrin A: a structurally new siderophore from staphylococci. Eur J Biochem 191:65–74

    Google Scholar 

  • Köster W (1991) Iron(III) hydroxamate transport across the cytoplasmic membrane ofEscherichia coli. Biol Metals 4:23–32

    Google Scholar 

  • Kunze B, Bedorf N, Kohl W, Höfle G, Reichenbach H (1989) Myxochelin A, a new iron-chelating compound fromAngiococcus disciformis (Myxobacteriales). J Antibiot 42:14–17

    Google Scholar 

  • Liu PV, Shokrani F (1978) Biological activities of pyochelins: iron-chelating agents ofPseudomonas aeruginosa. Infect Immun 22:878–890

    Google Scholar 

  • Lawlor KM, Payne SM (1984) Aerobactin genes inShigella spp. J Bacteriol 160:266–272

    Google Scholar 

  • Lochhead AG, Burton MO (1956) Incidence in soil of bacteria requiring vitamin B12 and the terregens factor. Soil Sci 82:237–245

    Google Scholar 

  • Luckey M, Pollack JR, Wayne R, Ames BN, Neilands JB (1972) Iron uptake inSalmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol 111:731–738

    Google Scholar 

  • Meyer JM, Abdallah MA (1980) The siderochromes of non-fluorescent pseudomonads: production of nocardamine byPseudomonas stutzeri. J Gen Microbiol 130:1893–1910

    Google Scholar 

  • Moore RE, Emery T (1976)N α-Acetylfusarinines: isolation, characterization and properties. Biochemistry 15:2719–2723

    Google Scholar 

  • Mullis KB, Pollack JR, Neilands JB (1971) Structure of shizokinen an iron transport compound fromBacillus megaterium. Biochemistry 10:4894–4898

    Google Scholar 

  • Müller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport inStreptomyces pilosus. J Bacteriol 160:304–312

    Google Scholar 

  • Payne S (1988) Iron and virulence in the family Enterobacteriaceae. CRC Crit Rev Microbiol 16:81–111

    Google Scholar 

  • Pollack JR, Ames BN, Neilands JB (1970) Iron transport inSalmonella typhimurium: mutants blocked in the biosynthesis of enterobactin. J Bacteriol 104:635–639

    Google Scholar 

  • Poole K, Young L, Neshat S (1990) Enterobactin-mediated iron transport inPseudomonas aeruginosa. J Bacteriol 172:6991–6996

    Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834

    Google Scholar 

  • Rabsch W, Tkacik J, Lindemann W, Mikula I, Reissbrodt R (1991) Different systems for iron supply ofSalmonella typhimurium andEscherichia coli wild strains as tool for typing. Zbl Bakt 274:437–445

    Google Scholar 

  • Reissbrodt R, Rabsch W, Chapeaurouge A, Jung G, Winkelmann G (1990) Isolation and identification of ferrioxamine G and E inHafnia alvei. Biol Met 3:54–60

    Google Scholar 

  • Sritharan M, Ratledge C (1990) Iron regulated envelope proteins of mycobacteria grown in vitro and their occurence inMycobacterium avium andMycobacterium leprae grown in vivo. Biol Metals 2:203–208

    Google Scholar 

  • Tuffano TP, Raymond KN (1981) Coordination chemistry of microbial iron transport compounds. 21. Kinetics and mechanism of iron exchange in hydroxamate siderophore complexes. J Am Chem Soc 103:6617–6624

    Google Scholar 

  • Williams P, Smith MA, Stevenson P, Griffith E, Tomas JMT (1989) Novel aerobactin receptor inKlebsiella pneumoniae. J Gen Microbiol 135:3173–3181

    Google Scholar 

  • Winkelmann G, Braun V (1981) Stereoselective recognition of ferrichrome by fungi and bacteria. FEMS Microbiol Lett 11:237–241

    Google Scholar 

  • Winkelmann G, van der Helm D, Neilands JB (1987) Iron transport in microbes, plants and animals. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press Inc., Boca Raton

    Google Scholar 

  • Wong GB, Kappet MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores. J Am Chem Soc 105:810–815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabsch, W., Winkelmann, G. The specificity of bacterial siderophore receptors probed by bioassays. Biol Metals 4, 244–250 (1991). https://doi.org/10.1007/BF01141188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141188

Key words

Navigation