Skip to main content
Log in

Treating large intermediate spaces in the CIPSI method through a direct selected CI algorithm

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

A general direct selected configuration interaction algorithm has been implemented and coupled to the second-order multireference many-body perturbation theory CIPSI algorithm. The new direct selected CI code is highly vectorizable and able to handle any list of determinants selected to describe a given electronic state of any spin multiplicity. In the present work selection of determinants has been carried out through the CIPSI algorithm but this is not a constraint of the direct selected CI code. The largest case treated so far involves a CI expansion containing 215 260 determinants selected from single and double excitations from 371 references. In this case there were 8 active electrons in 28 molecular orbitals for NH3 in a DZP basis set. The direct selected CI calculation needs only 14 Mb of central storage (for the 215 260 determinants case) and takes 406 seconds per iteration on an IBM 3090/600J with vector facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschlicher CW Jr, Langhoff SR (1990) Adv Chem Phys 77:103

    Google Scholar 

  2. Buenker RJ, Peyerimhoff SD (1968) Theoret Chim Acta 12:183; (1974) 35:33; (1975) 39:217

    Google Scholar 

  3. Buenker RJ, Peyerimhoff SD, Butscher W (1978) Mol Phys 35:771

    Google Scholar 

  4. Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803

    Google Scholar 

  5. Roos BO (1972) Chem Phys Lett 15:153

    Google Scholar 

  6. Meyer W (1976) J Chem Phys 64:2901

    Google Scholar 

  7. Dykstra CE, Schaefer III HF, Meyer W (1976) J Chem Phys 65:2740

    Google Scholar 

  8. Dykstra CE, Schaefer III HF, Meyer W (1976) J Chem Phys 65:5141

    Google Scholar 

  9. Dykstra CE (1977) J Chem Phys 67:4716

    Google Scholar 

  10. Roos BO, Siegbahn PEM (1977) in: Schaefer III HF (ed) Modern theoretical chemistry. Plenum, New York

    Google Scholar 

  11. Ahlrichs R (1979) Comput Phys Comm 17:31

    Google Scholar 

  12. Siegbahn PEM (1979) J Chem Phys 70:5391

    Google Scholar 

  13. Siegbahn PEM (1980) J Chem Phys 72:1647

    Google Scholar 

  14. Dykstra CE (1980) J Chem Phys 72:2928

    Google Scholar 

  15. Ahlrichs R (1981) in: van Duinen TH, Niewpoort WC (eds) Proc 5th seminar on computational methods in quantum chemistry. MPI Garching, München

    Google Scholar 

  16. Liu B, Yoshimine M (1981) J Chem Phys 74:612

    Google Scholar 

  17. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544

    Google Scholar 

  18. Lischka H, Shepard R, Brown FB, Shavitt I (1981) Int J Quantum Chem Symp 15:91

    Google Scholar 

  19. Werner HJ, Reinsch EA (1982) J Chem Phys 76:3144

    Google Scholar 

  20. Saxe P, Fox DJ, Shaefer III HF, Handy NC (1982) J Chem Phys 77:5584

    Google Scholar 

  21. Saunders VR, van Lenthe JH (1983) Mol Phys 48:923

    Google Scholar 

  22. Shavitt I (1983) in: Dykstra CE (ed) Advanced theories and computational approaches to the electronic structure of molecules. Reidel, Dordrecht

    Google Scholar 

  23. Siegbahn PEM (1977) Chem Phys 25:197

    Google Scholar 

  24. Siegbahn PEM (1983) Int J Quantum Chem 23:1864; (1980) 18:1229

    Google Scholar 

  25. Meyer W (1977) in: Shaefer III HF (ed) Modern theoretical chemistry. Plenum, New York

    Google Scholar 

  26. Huron B, Rancurel P, Malrieu JP (1973) J Chem Phys 75:5745; Pélissier M (1980) PhD Thesis, Toulouse

    Google Scholar 

  27. Evangelisti S, Daudey JP, Malrieu JP (1983) Chem Phys 75:91

    Google Scholar 

  28. Illas F, Rubio J, Ricart JM, Bagus PS (1991) J Chem Phys 95:1877

    Google Scholar 

  29. Sodupe M, Lluch JM, Oliva A, Illas F, Rubio J (1989) J Chem Phys 90:6436; (1990) 92:2478

    Google Scholar 

  30. Rubio J, Ricart JM, Illas F (1988) J Comput Chem 9:836

    Google Scholar 

  31. Illas F, Rubio J, Ricart JM (1988) J Chem Phys 89:6376

    Google Scholar 

  32. Illas F, Ricart JM, Rubio J, Bagus PS (1990) J Chem Phys 93:4982

    Google Scholar 

  33. Illas F, Bagus PS, Rubio J, González M (1991) J Chem Phys 94:3774

    Google Scholar 

  34. Illas F, Bachs M, Rubio J, Ricart JM (1989) J Chem Phys 91:5466

    Google Scholar 

  35. Novoa JJ, Mota F, Arnau F (1990) Chem Phys Lett 165:50

    Google Scholar 

  36. Illas F, Rubio J, Ricart JM (1988) J Chem Phys 88:260

    Google Scholar 

  37. Spiegelmann F, Pavolini D, Daudey JP (1989) J Phys B: At Mol Opt Phys 22:2465

    Google Scholar 

  38. Mathieu S, Navech J, Barthelat JC (1989) Inorg Chem 28:3099

    Google Scholar 

  39. Ramírez-Solís A, Daudey JP (1989) Chem Phys 134:111

    Google Scholar 

  40. Ramírez-Solís A, Daudey JP (1990) J Phys B: At Mol Opt Phys 23:2277

    Google Scholar 

  41. Nicolas G, Spiegelmann F (1990) J Am Chem Soc 112:5410

    Google Scholar 

  42. Illas F, Cañellas J, Ricart JM, Rubio J (1990) J Chem Phys 93:2603

    Google Scholar 

  43. Dupuis M, Rys J, King HF, HONDO-76, program 338, QCPE, University of Indiana, Bloomington, IN 47401. Pseudopotential adaptation by Daudey JP and Pelissier M. General ROHF adaptation by Caballol R and Daudey JP. CIPSI chain of programs by Pellisier M, Daudey JP, Malrieu JP, Evangelisti S, Spiegelmann F, Maynau D, Rubio J, and Illas F

  44. Davidson ER (1975) J Comput Phys 17:87

    Google Scholar 

  45. Olsen J, Roos BO, Jorgensen P, Jensen HJ (1988) J Chem Phys 89:2185

    Google Scholar 

  46. Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315; ibid (1989) Com Phys Comm 54:75

    Google Scholar 

  47. Zarrabian S, Sarma CS, Paldus J (1989) Chem Phys Lett 155:183

    Google Scholar 

  48. Harrison RJ, Zarrabian S (1989) Chem Phys Lett 158:393

    Google Scholar 

  49. Knowles PJ, Handy NC (1989) J Chem Phys 91:2396

    Google Scholar 

  50. Sousa C, Rubio J, Illas F (1991) Book of Abstracts of the VIIth Int Congress on Quantum Chemistry. Menton (France), 2–5 July 1991, p P-83. Additional information is available upon request.

  51. Sousa C, Rubio J, Illas F (in press) J Comput Chem

  52. Knowles PJ, Álvarez-Collado JR, Hirsch G, Buenker RJ (1990) J Chem Phys 92:585

    Google Scholar 

  53. Almlöf J, Deleeuw BJ, Taylor PR, Bauschlicher CW, Sigebahn P (1989) Int J Quantum Chemistry Symposium 23:345

    Google Scholar 

  54. Povill A, Rubio J, Illas F, work in progress

  55. Caballol R, Malrieu JP, private communication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povill, A., Rubio, J. & Illas, F. Treating large intermediate spaces in the CIPSI method through a direct selected CI algorithm. Theoret. Chim. Acta 82, 229–238 (1992). https://doi.org/10.1007/BF01113255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113255

Key words

Navigation