Skip to main content
Log in

Axon-glia relationships in crab nerves

  • Published:
Journal of Neurocytology

Summary

The nerves of the walking legs in the crabLebidoclea grammania were studied by electron microscopy. Particular attention was directed to the structure of the connective tissue, its arrangement within the axon sheaths and its association with the glial cells. The connective tissue of the neural lamella of the giant axons and the fascicles is formed by collagen fibrils and bands of mucopolysaccharides. Prolongations of the neural lamella divide the fascicles into bundles of contiguous axons, groups of loosely sheathed axons and nerve fibres wrapped by layers of glial cell processes alternating with layers of connective tissue. The glial cell processes close to the axons contained numerous microtubules whereas glycogen granules predominated in the more peripheral processes. These observations suggest that the connective tissue and glial cell processes forming the envelopes of the axons together participate in the maintenance of the microenvironment around axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J. (1971) The organization of the cerebral ganglion in the shore crab,Carcinus maenas. I. Morphology.Zeitschrift für Zellforschung und mikroskopische Anatomie 120, 386–400.

    Google Scholar 

  • Ashhurst, D. E. (1964) Fibrillogenesis in the wax moth,Galleria mellonella.Quarterly Journal of Microscopical Science 105, 391–403.

    Google Scholar 

  • Ashhurst, D. E. (1968) The connective tissue of insects.Annual Review of Entomology 13, 45–74.

    Google Scholar 

  • Ashhurst, D. E. andRichards, A. G. (1964) A study of changes occuring in the connective tissue associated with the central nervous system during the pupal stage of wax mothGalleria mellonellal.Journal of Morphology 114, 237–46.

    Google Scholar 

  • Baker, P. F. (1965) A method for location of extracellular space in crab nerve.Journal of Physiology (London) 180, 439–47.

    Google Scholar 

  • Barondes, S. H. andSamson, F. K. (1967) Axoplasmic transport.Neurosciences Research Program Bulletin 5, 307–419.

    Google Scholar 

  • Bullock, T. H. andHorridge, G. A. (1965) InStructure and junction in the nervous system of invertebrates. (T. H. Bullock andG. A. Horridge, eds). Freeman, W. H. and Co. Pub. San Francisco. Vol. I, pp. 35–125.

    Google Scholar 

  • De Lorenzo, A. J. D., Brzin, M. andDettbarn, M. D. (1968) Fine structure and organization of nerve fibers and giant axons inHomarus americanus.Journal of Ultrastructure Research 24, 367–84.

    Google Scholar 

  • Hama, K. (1966) The fine structure of the Schwann cell sheath of the nerve fiber in the shrimp (Penaeus japonicus).Journal of Cell Biology 31, 624–32.

    Google Scholar 

  • Horridge, G. A. andChapman, B. A. (1964) Sheaths of the motor axons of the crabCarcinus.Quarterly Journal of Microscopical Science 105, 175–81.

    Google Scholar 

  • Karnovsky, H. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.Journal of Cell Biology 27, 137A.

    Google Scholar 

  • Luco, J. V. (1959) El medio intimo extracelular.Anales de la Facultad de Medicina de Montevideo 44, 351–4.

    Google Scholar 

  • Maddrell, S. H. P. andTreherne, J. E. (1967) The ultrastructure of perineurium in the insect speciesCarasius morosus andPeriplaneta americana.Journal of Cell Science 2, 119–28.

    Google Scholar 

  • Maynard, E. A. (1971) Electron microscopy of stomatogastric ganglion in the lobster,Homarus americanus.Tissue and Cell 3, 137–60.

    Google Scholar 

  • Nathaniel, E. J. H. andPease, D. C. (1963) Collagen basement membrane formation by Schwann cells during nerve regeneration.Journal of Ultrastructure Research 9, 550–60.

    Google Scholar 

  • Peracchia, C. andRobertson, J. D. (1971) Increase in osmophilia of axonal membranes of crayfish as result of electrical stimulation, asphyxia, or treatment with reduction agents.Journal of Cell Biology 51, 223–39.

    Google Scholar 

  • Peters, A. andVaughn, J. E. (1967) Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves.Journal of Cell Biology 32, 113–9.

    Google Scholar 

  • Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.Journal of Cell Biology 17, 208–12.

    Google Scholar 

  • Rosenbluth, J. (1963) The visceral ganglion ofAplysia californica.Zeitschrift für Zellforschung und mikroskopische Anatomie 60, 213–36.

    Google Scholar 

  • Scharrer, B. C. J. (1939) The differentiation between neuroglia and connective tissues sheath in the cockroach (Periplaneta americana).Journal of Comparative Neurology 70, 77–88.

    Google Scholar 

  • Scharrer, B. C. J. (1965) Haemocytes within prothoracic glands of insects.American Zoologist 5, 235–6.

    Google Scholar 

  • Schmitt, F. O. andSamson, F. E. (1968) The molecular biology of neuronal fibrous proteins.Neurosciences Research Program Bulletin 6, 113–219.

    Google Scholar 

  • Selvín-Testa, A. andUrbina-Vidal, C. (1972) Ultraestructura del tejido conectivo en nervio de crustáceo (Lebidoclea grammania).Revista de Microscopia Electrónica 1, 66–7.

    Google Scholar 

  • Smith, D. S. andTreherne, J. E. (1963) Functional aspects of the insect nervous system.Advances in Insect Physiology 1, 401–84.

    Google Scholar 

  • Steinbrecht, R. A. (1969) On the question of nervous syncitia: lack of axon fusion in two insect sensory nerves.Journal of Cell Science 4, 39–53.

    Google Scholar 

  • Thomas, P. K. (1964). The deposition of collagen in relation to Schwann cell basement membrane during peripheral nerve regeneration.Journal of Cell Biology 23, 375–82.

    Google Scholar 

  • Treherne, J. E. andMoreton, R. (1970) The environment and function of invertebrate nerve cells.International Review of Cytology 28, 45–88.

    Google Scholar 

  • Wigglesworth, V. B. (1959) The histology of the nervous system of an insectRhodnius prolixus (hemiptera).Quarterly Journal of Microscopical Science 100, 285–98.

    Google Scholar 

  • Wigglesworth, V. B. (1960) The nutrition of the central nervous system in the cockroachPeriplaneta americana. I. The role of perineurium and glial cell in the mobilization of reserves.Journal of Experimental Biology 37, 500–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvín-Testa, A., Urbina-Vidal, C. Axon-glia relationships in crab nerves. J Neurocytol 4, 23–31 (1975). https://doi.org/10.1007/BF01099092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01099092

Keywords

Navigation