Skip to main content
Log in

An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.)

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and β-glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

β -glucuronidase

HPT:

hygromycin phosphotransferase

bar :

phosphinothricin acetyl transferase gene

PPT:

phosphophinothricin

NAA:

naphthalene acetic acid

2iP:

2-isopentenyl adenine

References

  • Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Curr Gen 17: 97–103.

    Google Scholar 

  • Barcelo P, Hagel C, Becker D, Martin A, Lorz H (1994) Plant J 5(4): 583–592.

    Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) Plant Mol Biol 20: 1195–1197.

    Google Scholar 

  • Bytebier B, Deboeck F, De Greve H, Van Montagu M, Hernalsteens JP (1987) Proc. Natl Acad Sci USA 84: 5345–5349.

    Google Scholar 

  • Cao J, Duan X, McElroy D, Wu R (1992) Plant Cell Rep 11:586–591.

    Google Scholar 

  • Cantaluppi CJ, Precheur RJ (1993) The Ohio State University Extension. Bulletin 826.

  • Castillo AM, Vasil V, Vasil IK (1994) Bio/technology 12: 1366–1371.

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Bio/technology 9: 957–962.

    Google Scholar 

  • Delbreil B, Guerche P, Jullien M (1993) Plant Cell Rep 12:129–132.

    Google Scholar 

  • Delbreil B, Jullien M (1994) Plant Cell Rep 13: 372–376.

    Google Scholar 

  • Esau K (1953) In: Esau K (ed) Plant Anatomy, J Wiley & Sons Inc, New York, Chapman & Hall LTD, London, pp 597–705.

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132: 6–13.

    Google Scholar 

  • Finer JJ, McMullen MD (1990) Plant Cell Rep 8: 586–589.

    Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Bio/technology 10: 1466–1472.

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams Jr WR, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Plant Cell 2: 603–618.

    Google Scholar 

  • Hartman CL, Lee L, Day PR, Turner NE (1994) Bio/technology 12:919–923.

    Google Scholar 

  • Jähne A, Becker D, Brettschneider R, Lörz H (1994) Theor Appl Genet 89: 525–533.

    Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaff S, Sletten M, Sanford J (1988) Proc Natl Acad Sci 85: 4305–4309.

    Google Scholar 

  • Levi A, Sink KC (1992) Plant Cell, Tissue and Organ Culture 31: 115–122.

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Bio/Technology 6:923–926.

    Google Scholar 

  • McCabe DE, Martinell BJ (1993) Bio/technology 11: 596–598.

    Google Scholar 

  • McCown BH, McCabe DE, Russell DR, Robison DJ, Barton KA, Raffa KF (1991) Plant Cell Rep 9: 590–594.

    Google Scholar 

  • Mukhopadhyay S, Desjardins Y (1994) Plant Cell Rep 13: 421–424.

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497.

    Google Scholar 

  • Pereira LF, Erickson L (1995) Plant Cell Rep 14: 290–293.

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) In Vitro Cell Dev Biol. 28P:97–105.

    Google Scholar 

  • Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Plant Cell Rep 12: 165–169.

    Google Scholar 

  • Saito T, Nishizawa S, Nishimura S (1991) Plant Cell Rep 10: 230–234.

    Google Scholar 

  • Sanford JC, Devit MJ, Rusell JA, Smith FD, Harpending PR, Roy MK, Johnston SA (1991) Technique 3: 1. 3–16.

    Google Scholar 

  • Serres R, Stang E (1992) J. Amer Soc Hart Sci 117: 174–180.

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98: 503–517.

    Google Scholar 

  • Shure M, Wessler S, Federoff N (1983) Cell 35: 225–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. K. Vasil

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera-Ponce, J.L., López, L., Assad-Garcia, N. et al. An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.). Plant Cell Reports 16, 255–260 (1997). https://doi.org/10.1007/BF01088276

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01088276

Keywords

Navigation