Skip to main content
Log in

Delayed-rectifying potassium channels in mouse peritoneal macrophages: Pharmacological analysis

  • Published:
Neurophysiology Aims and scope

Abstract

The effects of 4-aminopyridine, verapamil, and 4-bromophenacylbromide (4-BPB) on the kinetics of delayed outward-rectifying potassium currents (I K) were investigated in cultured mouse peritoneal macrophages using a classical whole-cell patch-clamp technique. The outwardI K was completely blocked by 4-aminopyridine at 1.0 mM concentration. Verapamil at the same concentration also blockedI K completely. Lower concentration (50 µM) of verapamil demonstrated only partial blocking action, which was almost fully reversible, and markedly increased the rate ofI K inactivation. The main effect of 4-BPB on the outwardI K was a significant acceleration ofI K activation and inactivation kinetics. It is suggested that this modulation results from a direct effect of 4-BPB on potassium channels or relates to the arachidonic acid cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Ypey and D. E. Clapham, “Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages,”Proc. Natl. Acad. Sci. USA,81, 3083–3087 (1984).

    PubMed  Google Scholar 

  2. B. Jow and D. G. Nelson, “Outwardly rectifying K+ current as a marker of cellular activation in human macrophages,”Biophys. J., 55, 539a (1989).

    Google Scholar 

  3. D. G. Nelson, B. Jow, and K. J. Popovich, “Whole-cell current in macrophages. II. Alveolar macrophages,”J. Membrane Biol.,117, 45–55 (1990).

    Google Scholar 

  4. O. P. Hamill, A. Marty, E. Neher, et al., “Improved patch-clamp techniques for high-resolution current recording from cell-free membrane patches,”Pflügers Arch.,391, 85–100 (1981).

    Google Scholar 

  5. K. G. Chandry, T. E. De Coursey, M. D. Cahalan, et al., “Voltage-gated potassium channels are required for human T-lymphocyte activation,”J. Exp. Med.,160, 369–385 (1984).

    PubMed  Google Scholar 

  6. T. E. De Coursey, K. G. Chandy, S. Gupta, and M. D. Cahalan, “Voltage-gated K+-channels in human T-lymphocytes: a role in mitogenesis,”Nature,307, 465–468 (1984).

    PubMed  Google Scholar 

  7. E. K. Gallin and P. A. Sheehy, “Differential expression of inward and outward potassium currents in the macrophage-like cell line J 774.1,”J. Physiol.,369, 475–499 (1985).

    PubMed  Google Scholar 

  8. E. K. Gallin, “Ion channels in leukocytes,”Physiol. Rev.,71, 775–811 (1991).

    PubMed  Google Scholar 

  9. D. G. Nelson, B. Jow, and F. Jow, “Whole-cell currents in macrophages. I. Human monocyte-derived macrophages,”J. Membrane Biol.,117, 29–44 (1990).

    Google Scholar 

  10. D. G. Nelson, L. Rufer, T. Nakayama, and J. M. Zeller, “Phorbol ester block of voltage-dependent K+ current in monocyte-derived macrophages,”Biophys. J., 49, 164a (1986).

    Google Scholar 

  11. C. Randriamampita and A. Trautmann, “Ionic channels in murine macrophages,”J. Cell Biol.,105, 761–769 (1987).

    PubMed  Google Scholar 

  12. R. E. Sheridan and B. M. Bayer, “Ionic membrane currents induced in macrophages during cytolysis,”Fed. Proc., 45, 1009a (1986).

    Google Scholar 

  13. M. D. Cahalan, K. G. Chandy, T. E. De Coursey, and A. Gupta, “A voltage-gated potassium channel in human T lymphocytes,”J. Physiol.,358, 197–237 (1985).

    PubMed  Google Scholar 

  14. W. A. Scott, N. A. Pawlovsky, H. W. Murray, et al., “Regulation of arachidonic acid metabolism by macrophage activation,”J. Exp. Med.,155, 1148–1160 (1982).

    PubMed  Google Scholar 

  15. T. A. Hamilton and D. O. Adams, “Molecular mechanisms of signal transduction in macrophages,”Immunol. Today,8, 151–158 (1987).

    Google Scholar 

  16. G. P. Brown, M. M. Monick, and G. W. Hunninghake, “Human alveolar macrophage arachidonic acid metabolism,”Am. J. Physiol.,254, 809–815 (1988).

    Google Scholar 

  17. M. Laviolette, M. Carreau, R. Coulombe, et al., “Metabolism of arachidonic acid through the5-lipoxygenase pathway in normal peritoneal macrophages,”J. Immunol.,141, 2104–2109 (1988).

    PubMed  Google Scholar 

  18. M. Giordano, J. R. Geffner, A. Prat, et al., “Cyclophosphamide modulates arachidonic acid metabolism by peritoneal macrophages,”Int. J. Immunopharmacol.,10, 939–944 (1988).

    PubMed  Google Scholar 

  19. W. Kander and R. Sundler, “Macrophage arachidonate-mobilizing phospholipase A: role of Ca++ for membrane binding but not for catalytic activity,”Biochem. Biophys. Res. Commun.,184, 118–124 (1992).

    PubMed  Google Scholar 

  20. R. F. Irvine, “How is level of free arachidonic acid controlled in mammalian cells,”Biochem. J.,204, 3–16 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 49–53, January–February, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutetskaya, Z.I., Lebedev, O.E. & Roshchina, N.G. Delayed-rectifying potassium channels in mouse peritoneal macrophages: Pharmacological analysis. Neurophysiology 26, 40–44 (1994). https://doi.org/10.1007/BF01059992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059992

Keywords

Navigation