Skip to main content
Log in

Relationships among duration of infusion, dose, dosing interval, and steady-state plasma concentrations during intermittent intravenous infusions: Studies with metronidazole

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Relationships among duration of infusion (T), dose, dosing interval (Τ), maximum and minimum plasma drug concentrations at steady state (Cmax,ssand Cmin,ss, respectively), and the duration of effective plasma concentrations (tD) during multidose intermittent infusion regimens were studied by computer simulation using metronidazoie as a model drug. Pharmacokinetic parameter values for metronidazole were obtained from the literature and the minimum effective plasma concentration (MEC) was taken as 6.0 Μg/ ml. Increasing the infusion period of the dose reduces Cmax,ss, but increases Cmin,ss. If intermittent bolus injection of a given dose of drug results in effective plasma concentrations for the entire dosage interval (i.e., Cmin,ss,bolus> MEC), then infusion of that dose over any period (T≤Τ) will also result in effective concentrations for the entire dosage interval. However, if the dosage is such that Cmin,ss,bolus < MEC, the relationships among duration of infusion, dose, dosage interval, and duration of effective plasma concentrations are complex. Therefore a nomogram was developed to allow selection of dose, dosing interval, and infusion period such that Cmax,ss and Cmin,ss could be maintained within a desired range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Raymond and D. J. Morgan. The effect of infusion time on the time course of drug concentration in blood.J. Pharmacokin. Biopharm. 8:573–582 (1980).

    Article  CAS  Google Scholar 

  2. D. J. Morgan and K. Raymond. The effect of duration of intravenous infusion on maximum and threshold blood concentrations for drugs exhibiting biexponential elimination kinetics.J. Pharmacokin. Biopharm. 10:93–107 (1982).

    Article  CAS  Google Scholar 

  3. A. P. Ball and J. A. Gray.Antibacterial Drugs Today, Adis Health Science Press, Sydney, 1983, p. 97.

    Google Scholar 

  4. J. G. Wagner. Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data.J. Pharmacokin. Biopharm. 4:443–467 (1976).

    Article  CAS  Google Scholar 

  5. M. Gibaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  6. H. R. Rabin, R. C. Urtasun, J. Partington, D. Koziol, M. Sharon, and K. Walker. High dose metronidazole: Pharmacokinetics and bioavailability using an I.V. preparation and application of its use as radiosensitizer.Cancer Treat. Rep. 64:1087–1095 (1980).

    CAS  PubMed  Google Scholar 

  7. A. W. Chow, V. Patten, and L. B. Gouze. Susceptibility of anaerobic bacteria to metronidazole: Relative resistance of non-spore-forming Gram-positive bacilli.J. Infect. Dis. 131:182–185 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. R. E. Notari, M. Huang, and P. R. Byron. Calculations of optimum pharmacokinetic drug supply rates for maximum duration during multiple dose therapy by prodrug administration.Int. J. Pharm. 1:233–247 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uccellini, D.A., Morgan, D.J. & Raymond, K. Relationships among duration of infusion, dose, dosing interval, and steady-state plasma concentrations during intermittent intravenous infusions: Studies with metronidazole. Journal of Pharmacokinetics and Biopharmaceutics 14, 95–106 (1986). https://doi.org/10.1007/BF01059286

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059286

Key words

Navigation