Skip to main content
Log in

Protein dynamics: From the native to the unfolded state and back again

  • Published:
Molecular Engineering

Abstract

Simulations to study protein unfolding and folding were performed. The unfolding simulations make use of molecular dynamics and treat an atomic model of barnase in aqueous solvent. The cooperative nature of the unfolding transition and the important role of water are described. The folding simulations are based on a bead model of the protein on a cubic lattice. It is shown for the 27-mer model that a large energy gap between the lowest energy (native) state and the excited states is a necessary and sufficient condition for fast folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Karplus and E. Shakhnovich: inProtein Folding, T. Creighton (Ed.), W.H. Freeman & Sons, p. 127 (1992).

  2. C. L. Brooks III, M. Karplus, and B. M. Pettitt:Proteins: A Theoretical Perspective of Dynamics, Structure, & Thermodynamics, Adv. Chem. Phys. Vol. LXXI, John Wiley & Sons (1988).

  3. O. B. Ptitsyn: inProtein Folding, T. E. Creighton (Ed.), W.H. Freeman, New York, p. 243 (1992).

    Google Scholar 

  4. A. Caflisch and M. Karplus: inThe Protein Folding Problem and Tertiary Structure Prediction, K. Merz, Jr. and S. Le Grand (Eds.), Birkhäuser, Boston, MA, p. 193 (1994).

    Google Scholar 

  5. A. Caflisch and M. Karplus:Proc. Natl. Acad. Sci. USA 91, 1746 (1994).

    Google Scholar 

  6. A. Šali, E. Shakhnovich, and M. Karplus:J. Mol. Biol. 235, 1614 (1994).

    Google Scholar 

  7. A. Šali, E. Shakhnovich, and M. Karplus:Nature 369, 248 (1994).

    Google Scholar 

  8. A. R. Fersht:FEBS Letters 325, 5 (1993).

    Google Scholar 

  9. L. Serrano, A. Matouschek, and A.R. Fersht:J. Mol. Biol. 224, 805 (1992).

    Google Scholar 

  10. L. Serrano, A. Matouschek, and A.R. Fersht:J. Mol. Biol. 224, 847 (1992).

    Google Scholar 

  11. C.L. Brooks III and M. Karplus:J. Chem. Phys. 79, 6312 (1983).

    Google Scholar 

  12. A. Matouschek, J. T. Kellis, Jr., L. Serrano, M. Bycroft and A. R. Fersht:Nature 346, 440 (1990).

    Google Scholar 

  13. A. E. Mark and W. F. van Gunsteren:Biochemistry 31, 7745 (1992).

    Google Scholar 

  14. J. Tirado-Rives and W. L. Jorgensen:Biochemistry 30, 3864 (1991).

    Google Scholar 

  15. D. J. Tobias and C. L. Brooks III:Biochemistry 30, 6059 (1991).

    Google Scholar 

  16. R. Kaptein, K. Dijkstra, and K. Nicolay:Nature 274, 293 (1978).

    Google Scholar 

  17. G. Otting and K. Wüthrich:J. Am. Chem. Soc. 111, 1871 (1989).

    Google Scholar 

  18. C. Ghelis:Biophysical J. 32, 503 (1980).

    Google Scholar 

  19. C. Levinthal: inMossbauer Spectroscopy in Biological Systems, Proceedings of a Meeting held at Allerton House, Monticello, Illinois,. P. Debrunner, J. C. M. Tsibris, and E. Münck (Eds.), University of Illinois Press, Urbana, p. 22 (1969).

    Google Scholar 

  20. E. Shakhnovich, G. Farztdinov, A. M. Gutin and M. Karplus:Phys. Rev. Lett. 67, 1665 (1991).

    Google Scholar 

  21. D. B. Wetlaufer:Proc. Natl. Acad. Sci. USA 70, 697 (1973).

    Google Scholar 

  22. P. Kim and R. Baldwin:Ann. Rev. Biochem. 59, 631 (1990).

    Google Scholar 

  23. N. Go and H. Abe:Biopolymers 20, 1013 (1981).

    Google Scholar 

  24. J. D. Honeycutt and D. Thirumalai:Biopolymers 32, 695 (1992).

    Google Scholar 

  25. Y. S. Bai and M. D. Fayer:Phys. Rev. B39, 11066 (1989).

    Google Scholar 

  26. K. A. Dill:Biochemistry 24, 1501 (1985).

    Google Scholar 

  27. E. E. Di Iorio, W. Yu, C. Calonder, K. H. Winterhalter, G. De Sanctis, G. Falcioni, F. Ascoli, B. Giardina, and M. Brunori:Proc. Natl. Acad. Sci. USA 90, 2025 (1993).

    Google Scholar 

  28. K. O. Stetter: inFrontiers of Life, J. K. Trân Thanh Vân, J. C. Mounolou, J. Schneider, and C. McKay (Eds.), Editions Frontières, Gif-sur-Yvette, France, p. 195 (1992).

    Google Scholar 

  29. N. Go and H. Abe:Adv. Biophys. 18, 149 (1984).

    Google Scholar 

  30. J. D. Bryngelson and P. G. Wolynes:Proc. Natl. Acad. Sci. USA 84, 7524 (1987).

    Google Scholar 

  31. H. Taketomi and N. Go:Intl. J. Peptide Prot. Res. 7, 445 (1975).

    Google Scholar 

  32. M. Karplus and D. L. Weaver:Protein Sci. 3, 650 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karplus, M., Caflisch, A., Săli, A. et al. Protein dynamics: From the native to the unfolded state and back again. Mol Eng 5, 55–70 (1995). https://doi.org/10.1007/BF00999578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999578

Key words

Navigation