Skip to main content
Log in

Decreased glutathione peroxidase activity in sciatic nerve of alloxan-induced diabetic mice and its correlation with blood glucose levels

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of alloxan-induced diabetes on glutathione peroxidase (GSH-Px) activity in sciatic nerve of mice has been studied. We have found, 7 days after alloxan treatment, a significant decrease in this enzymatic activity in the cytosol of sciatic nerve of diabetic mice, and moreover, that these changes remained unaltered up to 21 days after alloxan injection. No modification in the glutathione content of sciatic nerve of diabetic mice was observed throughout the experiment when compared with controls. The decrease in GSH-Px activity in this tissue shows a good correlation with the increase of blood glucose levels throughout the experiment. It is hypothesized whether a combination of mechanisms could be involved in this decrease of GSH-Px activity and if oxygen radicals might be the common mediators of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low, P. A., Tuck, R. R., and Takeuchi, M. 1987. Nerve microenvironment in diabetic neuropathy. Pages 266–278,in Dyck, P. J., Thomas, P. K., Asbury, A. K. and Winegrad, A. I. (eds.), Diabetic neuropathy, Saunders, Philadelphia.

    Google Scholar 

  2. Carroll, P. B., Thornton, B. M., and Greene, D. A. 1986. Glutathione redox state is not the link between polyol pathway activity andmyo-inositol-related Na+-K+-ATPase defect in experimental diabetic neuropathy. Diabetes 35:1282–1285.

    Google Scholar 

  3. Low, P. A. and Nickander, K. A. 1991. Oxygen free radical effects in sciatic nerve in experimental diabetes. Diabetes 40:873–877.

    Google Scholar 

  4. Romero, F. J., Monsalve, E., Hermenegildo, C., Puertas, F. J., Higueras, V., Nies, E., Segura-Aguilar, J., and Romá, J. 1991. Oxygen toxicity in the nervous tissue: comparison of the antioxidant defense of rat brain and sciatic nerve. Neurochem. Res. 16:157–161.

    Google Scholar 

  5. Rahman, I., Massaro, G. D., and Massaro, D. 1992. Exposure of rats to ozone: evidence of damage to heart and brain. Free Radical Biol. Med. 12:323–326.

    Google Scholar 

  6. Xue, J.-Y., Liu, G.-T., Wei, H.-L., and Pan, Y. 1992. Antioxidant activity of two dibenzocyclooctene lignans on the aged and ischemic brain in rats. Free Radical Biol. Med. 12:127–135.

    Google Scholar 

  7. Crouch, R. K., Kimsey, G., Priest, D. G., Sarda, A., and Buse, M. G. 1978. Effect of streptozotocin on erythrocyte and retinal superoxide dismutase. Diabetologia 15:53–57.

    Google Scholar 

  8. Greene, D. A., Sima, A. A. F., Pfeifer, M. A., and Albers, J. W. 1990. Diabetic neuropathy. Annu. Rev. Med. 41:303–317.

    Google Scholar 

  9. Low, P. A., Logerlund, T. D., and McManis, P. G. 1989. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int. Rev. Neurobiol. 31:355–438.

    Google Scholar 

  10. Brownlee, M., Cerami, A., and Vlassara, H. 1988. Advanced glycosylation end products in tissue and the biochemical basis of diabetes complications. N. Engl. J. Med. 318:1315–1321.

    Google Scholar 

  11. Hunt, J. V., Dean, R. T., and Wolff, S. P. 1988. Hydroxyl radical production and autoxidative glycosylation. Biochem. J. 256:205–212.

    Google Scholar 

  12. Lawrence, R. A., Parkhill, L. K., and Burk, R. F. 1978. Hepatic cytosolic non-selenium dependent glutathione peroxidase activity: its nature and the effect of selenium deficiency. J. Nutr. 108:981–987.

    Google Scholar 

  13. Penefsky, H. S., and Bruist, M. F. 1984. Adenosine triphosphatases. Vol. IV, Pages 324–335,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie, Weinheim.

    Google Scholar 

  14. Brigelius, R., Muckel, C., Akerboom, T. P. M., and Sies, H. 1983. Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem. Pharmacol. 32:2529–2534.

    Google Scholar 

  15. Kunst, A., Draeger, B., and Ziegenhorn, J. 1984. D-Glucose, Vol. VI, Pages 163–172,in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie, Weinheim.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  17. Hermenegildo, C., Felipo, V., Miñana, M.-D., and Grisolía, S. 1992. Inhibition of protein kinase C restores Na+, K+-ATPase activity in sciatic nerve of diabetic mice. J. Neurochem. 58:1246–1249.

    Google Scholar 

  18. Trüeb, B., Holenstein, C. G., Fisher, R. W., and Winterhalter, U. H. 1980. Nonenzymatic glycosylation of proteins. J. Biol. Chem. 255:6717–6720.

    Google Scholar 

  19. Schnider, S. L., and Kohn, R. R. 1980. Glucosylation of human collagen in aging and diabetes mellitus. J. Clin. Invest. 66:1179–1181.

    Google Scholar 

  20. Cohen, M. P. (ed.) 1986. Diabetes and Protein Glycosylation. Springer Verlag, New York.

    Google Scholar 

  21. Adachi, T., Ohta, H., Hirano, K., Hayashi, K., and Marklund, S. L. 1991. Non-enzymic glycation of human extracellular superoxide dismutase. Biochem. J. 279:263–267.

    Google Scholar 

  22. Perchellet, J.-P. and Perchellet, E. M. 1989. Antioxidants and multistage carcinogenesis in mouse skin. Free Radical Biol. Med. 7:377–408.

    Google Scholar 

  23. Pigeolet, E., Corbisier, P., Houbion, A., Lambert, D., Michiels, C., Raes, M., Zachary, M.-D., and Remacle, J. 1990. Glutathione peroxidase, superoxide dismutase and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Age. Dev. 51:283–297.

    Google Scholar 

  24. Wali, R. K., Dudeja, P. K., Bolt, M. J. G., Sitrin, M. D., and Brsitus, T. A. 1990. Correction of abnormal small intestinal cytosolic protein kinase C activity in streptozotocin-induced diabetes by insulin therapy. Biochem. J. 272:653–658.

    Google Scholar 

  25. Schäfer, A., Wieser, R. J., Romero, F. J., and Oesch, F. 1990. Reduction of glutathione content by 12-O-tetradecanoylphorbol-13-acetate in confluent but not in sparse cultures of human diploid fibroblasts. Carcinogenesis 11:697–699.

    Google Scholar 

  26. Romero, F. J., Llopis, J., Felipo, V., Miñana, M.-D., Romá, J., and Grisolía, S. 1992. H7, a protein kinase C inhibitor, increases the glutathione content of neuroblastoma cells. FEBS Lett. 303:19–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermenegildo, C., Raya, Á., Romá, J. et al. Decreased glutathione peroxidase activity in sciatic nerve of alloxan-induced diabetic mice and its correlation with blood glucose levels. Neurochem Res 18, 893–896 (1993). https://doi.org/10.1007/BF00998274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998274

Key Words

Navigation