Skip to main content
Log in

Specificity of zinc binding to myelin basic protein

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martenson, R. E. (ed.) 1992. Myelin: Biology and Chemistry. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  2. Kirschner, D. A., and Ganser, A. L. 1980. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–210.

    Google Scholar 

  3. Omlin, F. X., Webster, F. de H. Palkovits, C. G., and Cohen, S. 1982. Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J. Cell. Biol. 95:242–248.

    Google Scholar 

  4. Carnegie, P. R., and Dunkley, P. R. 1975. Basic proteins of central and peripheral nervous system myelin. Pages 95, In: Agranoff B. W. and Aprison, M. H. (eds), Advances in Neurochemistry, Plenum Press, New York.

    Google Scholar 

  5. Riccio, P., Masotti, L., Cavatorta, P., De Santis, A., Juretic, D., Bobba, A., Pasquali-Ronchetti, I., and Quagliariello, E., 1986. Myelin Basic Protein Ability to Organize Lipid Bilayers: Structural Transition in Bilayers of Lisophosphatidylcholine Micelles. Biochem. Biophys. Res. Commun. 134:313–319.

    Google Scholar 

  6. Readhead, C., Popko, B., Takahashi, N., Shine, H. D., Saavedra, R. A., Sidman, R. L., and Hood, L. 1987. Expression of a myelin basic protein gene in transgenic mice: correction of the dysmyelinating phenotype. Cell, 48:703–712.

    Google Scholar 

  7. Kirschner, D. A., and Blaurock, A. E. 1992. Organization, phylogenetic variations and dynamic transitions of myelin. Pages 3–78,in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton, Florida.

    Google Scholar 

  8. Bourre, J. M., Cloez, I., Galliot, M., Buisine, A., Dumont, O., Piciotti, M., Prouillet, F., and Bourdon, R. 1987. Occurrence of manganese, copper and zinc in myelin. Alterations in the peripheral nervous system of dysmyelinating trembler mutant are at variance with brain mutants (quaking and shiverer). Neurochem. Int. 10:281.

    Google Scholar 

  9. Berlet, H. H. 1989. Ionic binding and complexing of heavy metal ions by central myelin. (Abstr.) Trans. Am. Soc. Neurochem. 20: 254.

    Google Scholar 

  10. Inouye, H., and Kirschner, D. A. 1984. Effects of ZnCl2 on membrane interactions in myelin of normal and shiverer mice Biochim. Biophys. Acta 776:197–208.

    Google Scholar 

  11. Berlet, H. H., Ilzenhöfer, H., Schulz, R., and Gass, P. 1987. Cation-mediated release and proteolytic cleavage of basic protein of isolated human myelin at acid pH. Neurochem. Pathol 6:195–211.

    Google Scholar 

  12. Earl, C., Chantry, A., Mohammad, N., and Glynn, P. 1988. Zinc ions stabilise the association of basic protein with brain myelin membranes. J. Neurochem. 51:718–724.

    Google Scholar 

  13. Berlet, H. H. 1989b. Binding mechanism of Zn++ and the nonionic retention of salt-soluble myelin proteins by the myelin sheath. J. Neurochem. (Suppl.) 52:196.

    Google Scholar 

  14. Cavatorta, P., Giovannelli, S., Bobba, A., Riccio, P., Szabo, A., and Quagliariello, E. 1994. Myelin basic protein interaction with zinc and phosphate: a fluorescent study on the water-soluble form of the protein. Biophys. J. 66:1174–1179.

    Google Scholar 

  15. Norton, W. T. 1974. Isolation of myelin from nerve tissue. Methods Enzymol. 31:435–444

    Google Scholar 

  16. Deibler, G. E., Martenson, R. E., and Kies, M. W. 1972. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep. Biochem. 2:139–165.

    Google Scholar 

  17. Deibler, G. E., Boyd, L. F., and Kies, M. W. 1984. Proteolytic activity associated with purified myelin basic protein. Pages 249–256,in Alvord, E. C. Jr., Kies, M. W., and Suckling A. J. (eds.), Experimental allergic encephalomyelitis: a useful model for multiple sclerosis, Alan R. Liss, Inc., New York.

    Google Scholar 

  18. Liebes, L. F., Zand, R., and Phillips, W. D. 1975. Solution behaviour, circular dichroism and 220 MHz PMR studies of the bovine myelin basic protein. Biochim. Biophys. Acta 405:27–39.

    Google Scholar 

  19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  20. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    Google Scholar 

  21. Schiff, L. A., Nibert, M. L., Fields, B. N. 1988. Characterization of a zinc blotting technique: Evidence that a retroviral gag protein binds zinc Proc. Natl. Acad. Sci. USA 85:4195–4199.

    Google Scholar 

  22. Aggett, P. J. 1988. Physiology and metabolism of essential trace elements: an outline. Biochim. Clin. 12:15–32.

    Google Scholar 

  23. Williams, R. J. P. 1985. The symbiosis of metal and protein functions. Eur. J. Biochem. 150:231–248.

    Google Scholar 

  24. Vallee, B. L., and Galdes, A. 1984. The metallobiochemistry of zinc enzymes. Advances Enzymol 56:284–430.

    Google Scholar 

  25. Coleman, J. E. 1992. Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins. Annu. Rev. Biochem. 61:897–946.

    Google Scholar 

  26. Bettger, W. J., and O'Dell, B. L. 1981. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 28:1425–1438.

    Google Scholar 

  27. Bashford, C. L., Alder, G. M., Menestrina, G., Micklem, K. J., Murphy, J. J., Pasternak, C. A. 1986. Membrane damage by hemolitic viruses, toxins, complement, and other cytotoxic agents: a common mechanism blocked by divalent cations. J. Biol. Chem. 261:9300–9308.

    Google Scholar 

  28. Mendz, D. L. 1992. Structure and molecular interactions of myelin basic protein and its antigenic peptides. Pages 277–366,in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Boca Raton, Florida.

    Google Scholar 

  29. Smith, R., and Braun, P. E. 1988. Release of proteins from the surface of bovine central nervous system myelin by salts and phospholipases. J. Neurochem. 50:722–729.

    Google Scholar 

  30. Karthigasan, J., Kosaras, B., Nguyen, J., and Kirschner, D. A. (1994) Protein and lipid composition of radial component-enriched CNS myelin. J. Neurochem. 62, 1203–1213.

    Google Scholar 

  31. Clague, M. J., and Cherry R. J. (1989) A comparative study of band 3 aggregation in erythrocyte membranes by mellittin and other cationic agents. Biochim. Biophys. Acta 980, 93–99.

    Google Scholar 

  32. Vallee, B. L., and Auld, D. S. 1990. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659.

    Google Scholar 

  33. DesJardins, K. C., and Morell, P. 1983. Phosphate groups modifying myelin basic proteins are metabolically labile; methyl groups are stable. J. Cell. Biol. 97:438–446.

    Google Scholar 

  34. Assaaf, S. Y., and Chang, S. H. 1984. Release of endogenous zinc from brain tissue during activity. Nature 308:726–734.

    Google Scholar 

  35. Henkin, R. I., Patten, B. M., Re, P. K., and Bronzert, P. A. 1975. A syndrome of acute zinc loss, cerebellar dysfunction, mental changes, anorexia and taste and smell dysfunction. Archives Neurol. 32:745–751.

    Google Scholar 

  36. Golds, E. E., and Braun, P. E. 1978. Cross-linking studies on the conformation and dimerization of myelin basic protein in solution. J. Biol. Chem. 253:8171–8177.

    Google Scholar 

  37. Smith, R. 1985. The encephalitogenic protein of myelin forms hexamers in which the polypeptides have a pleated-sheet structure. FEBS Lett. 183:331–334.

    Google Scholar 

  38. Moskaitis, J. E., Shriver, L. C., and Campagnoni, A. T. 1987. The association of myelin basic protein with itself and other proteins. Neurochem. Res. 12:409–417.

    Google Scholar 

  39. Riccio, P., Rosenbusch, J. P., and Quagliariello, E. 1984. A new procedure to isolate brain myelin basic protein in a lipid-bound form. FEBS Lett. 177:236–240.

    Google Scholar 

  40. Riccio, P., Bobba, A., Romito, E., Minetola, M., and Quagliariello E. 1994. A new detergent to purify CNS myelin basic protein isoforms in lipid-bound form. NeuroReport 5:689–692.

    Google Scholar 

  41. Riccio, P., and Quagliariello, E. 1993. Lipid-bound, native-like, myelin basic protein: a well-known protein in a new guise, or an unlikely story? J. Neurochem. 61:787–788.

    Google Scholar 

  42. Liuzzi G. M., Ventola A., Rizzo T., Riccio P., and Quagliariello E. 1991. Zinc as an Inhibitor of Myelin Basic Protein Proteolytic Breakdown in the Central Nervous System. Acta Neurologica 13: 153–161.

    Google Scholar 

  43. Ludwin S. K. 1981. Pathology of demyelination and remyelination. Pages 123–168.in Waksman S. G. and Ritchie, J. M. (eds.). Advances in Neurology in: Demyelinating Disease: Basic and Clinical Electrophysiology, Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riccio, P., Giovannelli, S., Bobba, A. et al. Specificity of zinc binding to myelin basic protein. Neurochem Res 20, 1107–1113 (1995). https://doi.org/10.1007/BF00995566

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995566

Key Words

Navigation