Skip to main content
Log in

Distribution of indoleamines and [3H]paroxetine binding in rat brain regions following acute or perinatal Δ9-tetrahydrocannabinol treatments

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of Δ9-tetrahydrocannabinol (Δ9-tetrahydrocannabinol-THC) administration on the central serotoninergic system were evaluated by biochemical assays of tissue levels of indoleamines; a measure of the serotonin (5-HT) innervation was obtained by using [3H]paroxetine as a maker of 5-HT uptake sites. Two different Δ9-THC treatments were chosen, i.e: acute and chronic perinatal maternal exposure. Following acute treatment (5mg/kg), the 5-HT content increased in dorsal hippocampus (+35%), Substantia nigra (+61%) and neostriatum (+62%) but remained unchanged in cingulate cortex, Raphe nuclei, Locus coeruleus and anterior hypothalamus. Endogenous 5-hydroxyindole-3-acetic acid (5-HIAA) decreased in anterior hypothalamus (−23%) and Raphe nuclei (−21%). Following maternal exposure to Δ9-THC (5 mg/kg per day; from gestational day 13 to postnatal day 7), levels of 5-HT were increased in the neostriatum (+22%) but decreased in anterior hypothalamus (−25%), Raphe nuclei (−29%) and Locus coeruleus (−20%) of the litters. Tissue 5-HIAA was increased in anterior hypothalamus (+23%) and Substantia nigra (+48%). There were no changes in 5-HT uptake site density, determined by [3H]paroxetine binding, except for an increase (+50%) in the cingulate cortex of perinatal-treated rats when compared to acutely-treated animals. The present results show that acute and maternal exposure to Δ9-THC produced different effects on the central 5-HT system of the offspring, with a clear regional especifity, but with no changes in the densities of 5-HT uptake sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hypo:

anterior hypothalamus

Cin:

cingulate cortex

dHipp:

dorsal hippocampus

5-HIAA:

5-hydroxyindole-3-acetic acid

HPLC:

high-performance liquid chromatography

5-HT:

serotonin

5-HTP:

5 hydroxy-1-tryptophan

LC:

Locus coeruleus

rNS:

rostral neostriatum

MRN:

midbrain Raphe nuclei region

SN:

Substantia nigra

Δ9-THC:

Δ9-Tetrahydrocannabinol

References

  1. Hollister, L. E. 1986. Health aspects of cannabis. Pharmacol. Rev. 38:1–20.

    PubMed  Google Scholar 

  2. Kumar, A. M., Haney, M., Becker, T., Thompson, M. L., Kream, R. M., and Miczeck, K. 1990. Effect of early exposure to Δ-9-tetrahydrocannabinol on the levels of opioid peptides, gonadotropin-releasing hormone and substance P in the adult male rat brain. Brain Res. 525:78–83.

    PubMed  Google Scholar 

  3. Bloom, A. S., and Kiernan, J. 1980. Interaction of ambient temperature with the effect of Δ9-Tetrahydrocannabinol on brain catecholamine synthesis and plasma corticosterone levels. Psychopharmacol. 67:215–219.

    Google Scholar 

  4. Johnson, K. M., Dewey, W. L., and Bloom, A. S. 1981. Adrenalectomy reverses the effecst of delta-9-THC on mouse brain 5-hydroxytryptamine turnover. Pharmacol. 23:223–229.

    Google Scholar 

  5. Steger, R. W., De Paolo, L., Asch, R. H., and Silverman, A. Y. 1983. Interactions of Δ9-Tetrahydrocannabinol (THC) with hypothalamic neurotransmitters controlling luteinizing hormone and prolactin release. Neuroendocrinol. 37:361–370.

    Google Scholar 

  6. Howeltt, A. C., Qualy, J. M., and Khachatrian, L. L. 1986. Involvement of Gi in the inhibition of adenylate cyclase by cannabinoid drugs. Mol. Pharmacol. 29:307–313.

    PubMed  Google Scholar 

  7. Bideaut-Russell, M., Devane, W. A., and Howlett, A. C. 1990. Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J. Neurochem. 55:21–26.

    PubMed  Google Scholar 

  8. Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice K. C. 1990. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. U.S.A. 87:1932–1936.

    PubMed  Google Scholar 

  9. Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C. 1991. Characterization and localization of Cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 11:563–583.

    PubMed  Google Scholar 

  10. Herkenham, M., Lynn, A. B., de Costa, B. R., and Richfield, E. K. 1991. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 547:267–274.

    PubMed  Google Scholar 

  11. Thomas, B. F., Wei, X., and Martin, B. R. 1992. Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H]11-OH-Δ9-THC-DMH. J. Pharmacol. Exp. Ther. 263:1383–1390.

    PubMed  Google Scholar 

  12. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I. 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564.

    PubMed  Google Scholar 

  13. Mailleux, P., Verslijpe, M., and Vanderhaeghen, J-J. 1992. Initial observations on the distribution of cannabinoid receptor binding sites in the human adult basal ganglia using autoradiography. Neurosci. Lett. 139:7–9.

    PubMed  Google Scholar 

  14. Matsuda, L. A., Bonner, T. I., and Lolait, S. J. 1993. Localization of cannabinoid receptor mRNA in rat brain. J. Comp. Neurol. 327:535–550.

    PubMed  Google Scholar 

  15. Kramer, J., and Ben-David, M. 1978. Prolactin suppression by (-)Δ-9-tetrahydrocannabinol (THC): involvement of serotoninergic and dopaminergic pathways. Endocrinol. 103:452–457.

    Google Scholar 

  16. Sofia, R. D., Dixit, B. N., and Barry, H. 1971. The effects of Δ9-tetrahydrocannabinol on serotonin metabolism in the brain. Life Sci. 10:425–436.

    Google Scholar 

  17. Dewey, W. L. 1986. Cannabinoid pharmacology. Pharmacol. Rev. 38:151–178.

    PubMed  Google Scholar 

  18. Yagiela, J. A., MacCarthy, K. D., and Gibb, J. W. 1974. The effect of hypothermic doses of 1-Δ9-tetrahydrocannabinol on biogenic amine metabolism in selected parts of the rat brain. Life Sci. 14:2367–2378.

    PubMed  Google Scholar 

  19. Taylor, D. A., and Fennessy, M. R. 1979. The effect of Δ9-tetrahydrocannabinol (Δ9-THC) on the turnover rate of brain serotonin of the rat. Clin. Exp. Pharmacol. Physiol. 6:327–334.

    PubMed  Google Scholar 

  20. Ouellet, J., Palic, D., Albert, J. M., and Tetreault, L. 1973. Effect of Δ9-THC on serotonin, MAO and tryptophan hydroxilase in rat brain. Rev. Can. Biol. 23:213–217.

    Google Scholar 

  21. Habert, E., Graham, D., Tahraoui, L., Claustre, Y., and Langer, S. Z. 1985. Characterization of [3H]paroxetine binding to rat cortical membranes. Eur. J. Pharmacol. 118:107–114.

    PubMed  Google Scholar 

  22. De Souza, E. B., and Kuyatt, B. L. 1987. Autoradiographic localization of3H-paroxetine-labeled serotonin uptake sites in rat brain. Synapse 1:488–496.

    PubMed  Google Scholar 

  23. Thomas, D. R., Nelson, D. R., and Johnson, A. M. 1987. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology 93:193–200.

    PubMed  Google Scholar 

  24. Dewar, K. M., Reader, T. A., Grondin, L., and Descarries, L. 1991. [3H]Paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum and midbrain raphe nuclei region. Synapse 9:14–26.

    PubMed  Google Scholar 

  25. Rosenkrantz, H. and Braude, M. C. 1976. Comparative chronic toxicities of Δ9-tetrahydrocannabinol administrated by inhalation or orally to rats. Pages 571–584in Braude, M. C. and Szara, S. (eds), The Pharmacology of Marihuana. Raven Press, New York.

    Google Scholar 

  26. Reader, T. A., and Grondin, L. 1987. Distribution of catecholamines, serotonin, and their major metabolites in the rat cingulate, piriform-entorhinal, somatosensory, and visual cortex: a biochemical survey using high-performance liquid chromatography. Neurochem. Res. 12:1087–1097.

    PubMed  Google Scholar 

  27. Reader, T. A., Dewar, K. M., and Grondin, L. 1989. Distribution of monoamines and metabolites in rabbit neostriatum, hippocampus and cortex. Brain Res. Bull. 23:237–247.

    PubMed  Google Scholar 

  28. Bergeron, M., Swain, M. S., Reader, T. A., Grondin, L., and Butterworth, R. F. 1990. Effect of ammonia on brain serotonin metabolism in relation to function in the portacaval shunted rat. J. Neurochem. 55:222–229.

    PubMed  Google Scholar 

  29. Zilles, K. 1985. The Cortex of the Rat. A Stereotaxic Atlas. Berlin, Springer.

    Google Scholar 

  30. Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sidney and New York.

    Google Scholar 

  31. Mitro, A., and Palkovits, M. 1981. Morphology of the Rat Brain Ventricles, Ependyma, and Periventricular Structures. Karger, Basel.

    Google Scholar 

  32. Mellerup, E. T., and Plenge, P. 1986. High affinity binding of3H-paroxetine and3H-imipramine to rat neuronal membranes. Psychopharmacology 89:436–439.

    PubMed  Google Scholar 

  33. Marcusson, J. O., Bergtröm, M., Eriksson, K., and Ross, S. B., 1988. Characterization of [3H]paroxetine binding in rat brain. J. Neurochem. 50:1783–1790.

    PubMed  Google Scholar 

  34. Dewar, K. M., Grondin, L., Carli, M., Lima, L., and Reader, T. A. 1992. [3H]Paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region followingp-chlorophenylalanine andp-chloroamphetamine treatment. J. Neurochem. 58:250–257.

    PubMed  Google Scholar 

  35. Hytell, J. 1982. Citalopram-Pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog. Neuropsychopharmacol. Biol. Psychiat. 6:277–295.

    Google Scholar 

  36. D'Amato, R. J., Largent, B. L., Snowman, a. M., and Snyde, S. H. 1987. Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J. Pharmacol. Exp. Ther. 242:364–371.

    PubMed  Google Scholar 

  37. Boyson, S. J., McGonigle, P., and Molinoff, P. B. 1986. Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6:3177–3188.

    PubMed  Google Scholar 

  38. Diop, L., Gottberg, E., Brière, R., Grondin, L., and Reader, T. A. 1988. Distribution of dopamine D1 receptors in rat cortical areas, neostriatum, olfactory bulb and hippocampus in relation to endogenous dopamine contents. Synapse 2:395–405.

    PubMed  Google Scholar 

  39. Dewar, K. M., and Reader, T. A. 1989. Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.

    PubMed  Google Scholar 

  40. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  41. McKay, L., Bradberry, C., and Oke, A. 1984. Ascorbic acid oxidase speeds up analysis for catecholamines, indoleamines and their metabolites in brain tissue using high performance liquid chromatography with electrochemical detection. J. Chromatogr. 311:167–169.

    PubMed  Google Scholar 

  42. Sauvé, Y., and Reader, T. A. 1988. Effects of alpha-methyl-p-tyrosine on monoamines and catecholamine receptors in rat cerebral cortex and neostriatum. Neurochem. Res. 13:807–815.

    PubMed  Google Scholar 

  43. Parent, A., Descarries, L., and Beaudet, A. 1981. Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6:115–138.

    PubMed  Google Scholar 

  44. Steinbusch, H. W. M. 1981. Distribution of serotonin-immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neuroscience 6:557–618.

    PubMed  Google Scholar 

  45. Poddar, M. K., Biswas, B., Ghosh, J. J. 1976. Delta-9-tetrahydrocannabinol and brain biogenic amines, in Drugs and Central Synaptic Transmission (Bradley P. B., and Dhawan B. N., eds), pp 193–199. Macmillan, London.

    Google Scholar 

  46. Lin, M. T., Wu, J. J., and Tsay, B. L. 1983. Serotoninergic mechanisms in the rat hypothalamus mediate thermoregulatory responses in rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 322:271–278.

    Google Scholar 

  47. Schoepp, D. D., and Azzaro, A. J. 1981. Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J. Neurochem. 36:2025–2031.

    PubMed  Google Scholar 

  48. Banerjee, S. P., Snyder, S. H., and Mechoulam, R. 1975. Cannabinoids: Influence on neurotransmitter uptake in rat brain synaptosomes. J. Pharmacol. Exp. Ther. 194:74–81.

    PubMed  Google Scholar 

  49. Dewey, W. L., Poddar, M. K., and Johnson, K. M. 1979. The effects of cannabinoids on rat brain synaptosomes. In Marijuana: Biological Effects. Analysis, Metabolism, Cellular Responses, reproduction and Brain. Nahas, G. G. and Paton, W. D. M. edrs. Adv. Biosci. 22 & 23, pp 343–349. Pergamon Press, Oxford.

    Google Scholar 

  50. Kalén, P., Strecker, R. E., Rosengren, E., and Björklund, A. 1988. Endogenous release of neuronal serotonin and 5-hydroxyindole acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with flourimetric detection. J. Neurochem. 51:1422–1435.

    PubMed  Google Scholar 

  51. Graham, D., Taraoui, L., and Langer, S. Z. 1987. Effect of chronic treatment with selective monoamine oxidase inhibitors and specific 5-hydroxytryptamine uptake inhibitors on [3H]paroxetine binding to cerebral cortical membranes of the rat. Neuropharmacology 26:1087–1092.

    PubMed  Google Scholar 

  52. Vardaris, R. M., Weisz, D. J., Fazel, A., and Rawitch, A. B. 1976. Chronic administration of delta-9-tetrahydrocannabinol to pregnant rats: studies of pup behavior and placental transfer. Pharmacol. Biochem. Behav. 4:249–254.

    Google Scholar 

  53. Rodríguez de Fonseca, F., Cebeira, M., Fernández Ruiz, J. J., Navarro, M., and Ramos, J. A. 1991. Effects of pre-and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons. Neuroscience 43:713–723.

    PubMed  Google Scholar 

  54. Rodríguez de Fonseca, F., Cebeira, M., Hernández, M. L., Ramos, J. A., and Fernández-Ruiz, J. J. 1990. Changes in brain dopaminergic indices induced by perinatal exposure to cannabinoids in rats. Dev. Brain Res. 51:237–240.

    Google Scholar 

  55. Martin, B. R., Dewey, W. L., Harris, L. S., and Beckner, J. S. 1977.3H-Delta-9-tetrahydrocannabinol distribution in pregnant dogs and their fetuses. Res. Commun. Chem. Path. Pharmacol. 17:457–470.

    Google Scholar 

  56. Jakubovic, A., Hattori, T., and McGeer, P. L. 1973. Radioactivity in the suckled rat after giving14C-tetrahydrocannabinol to the mother. Eur. J. Pharmacol. 22:221–223.

    PubMed  Google Scholar 

  57. Lidov, H. G. W., and Molliver, M. E. 1981. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8:389–430.

    Google Scholar 

  58. Akbari, H. M., Kramer, H. K., Whitaker-Azmitia, P. M., Spear, L. P., and Azmitia, E. C. 1992. Prenatal cocaine exposure disrupts the development of the serotoninergic system. Brain Res. 572:57–63.

    PubMed  Google Scholar 

  59. Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Holgado, F., Molina-Holgado, E., Leret, M.L. et al. Distribution of indoleamines and [3H]paroxetine binding in rat brain regions following acute or perinatal Δ9-tetrahydrocannabinol treatments. Neurochem Res 18, 1183–1191 (1993). https://doi.org/10.1007/BF00978372

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00978372

Key Words

Navigation