Skip to main content
Log in

Monoamine oxidase inhibition byl-deprenyl depends on both sex and route of administration in the rat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The monoamine oxidase B (MAO-B) inhibitorl-deprenyl, widely used to treat Parkinson's disease, has frequently been studied in animal models. We have examined the effects of several variables on activity levels of MAO-A and B in rat brain and liver following chronic (3 wks) treatment withl-deprenyl. Significant effects were observed for sex (females showed lower overall MAO-B activity in the liver), dose (MAO-A and B inhibition increased with dose, with females exhibiting greater sensitivity), route of administration (subcutaneous injection was more efficient than oral dosing), and dosing interval (MAO-B was significantly inhibited when dosing interval was increased to as long as 168 hours). Our results thus indicate that the effectiveness ofl-deprenyl in vivo is dependent on several factors and that these must be taken into account in studies involving the benefits or risks of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschko, H. 1952. Amine oxidase and amine metabolism. Pharmacol. Rev. 4:415–453.

    Google Scholar 

  2. Willoughby, J., Glover, V., and Sandler, M. 1988. Histochemical localisation of monoamine oxidase A and B in rat brain. J. Neural Transm. 74:29–42.

    Google Scholar 

  3. Youdim, M. B. H. 1975. Monoamine oxidase: its inhibition. Mod. Probl. Pharmacopsych. 10:65–88.

    Google Scholar 

  4. Johnston, J. P. 1968. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol. 17:1285–1297.

    Google Scholar 

  5. Fowler, C. J., and Tipton, K. F. 1984. On the substrate specificities of the two forms of monoamine oxidase. J. Pharm. Pharmacol. 36:111–115.

    Google Scholar 

  6. Kinemuchi, H., Fowler, C. J., and Tipton, K. F. 1984. Substrate specificities of the two forms of monoamine oxidase. Pages 53–62.in Tipton, K. F., Doster, P., and Strolin Benedetti M. (eds.), Monoamine Oxidase and Disease, Academic Press, London.

    Google Scholar 

  7. Knoll, J., and Magyar, K. 1972. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv. Biochem. Psychopharmacol. 5:393–408.

    Google Scholar 

  8. Yang, H.-Y. T., and Neff, N. H. 1974. The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of the biogenic amines. J. Pharmacol. Exp. Therap. 189:733–740.

    Google Scholar 

  9. Squires, R. F. 1972. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. Adv. Biochem. Psychopharmacol. 5:355–369.

    Google Scholar 

  10. Tipton, K. F., Dostert, P., and Strolin Benedettii, M. (eds.). 1984. Monoamine Oxidase and Disease: Prospects for Therapy with Reversible Inhibitors. Academic Press, London.

    Google Scholar 

  11. Birkmayer, W., Riederer, P., Ambrozi, L., and Youdim, M. B. H. 1977. Implications of combined treatment with madopar andl-deprenyl in Parkinson's disease. Lancet. i:439–443.

    Google Scholar 

  12. Youdhim, M. B. H., Riederer, P., Birkmayer, W., and Medlewicz, J. 1979. The functional activity of monoamine oxidase: the use of deprenyl in the treatment of Parkinson's disease and depressive illness. Pages 477–496,in Singer, T. P., Von Korff, R. W., and Murphy, D. L. (eds.), Monoamine Oxidase: Structure, Function, and Altered Functions. Academic Press, New York.

    Google Scholar 

  13. Glover, V., Sandler, M., Owen, F., and Riley, G. J. 1977. Dopamine is a monoamine oxidase B substrate in man. Nature 265:80–81.

    Google Scholar 

  14. Riederer, P., Konradi, C., Schay, V., Kienzl, E., Birkmayer, G., Danielczyk, W., Sofic, E., and Youdim, M. B. H. 1986. Localisation of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of l-deprenyl. Pages 111–118,in Yahr, M. D., and Bergmann, K. J. (eds.), Advances in Neurology, vol. 45, Raven press, New York.

    Google Scholar 

  15. Kuhn, D. M., Murphy, D. L., and Youdhim, M. B. H. 1985. Physiological and clinical aspects of monoamine oxidase. Pages 231–248,in Mondovi, B. (ed.), Structure and Function of Amine Oxidases. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  16. Birkmayer, W., Riederer, P., Youdhim, M. B. H., and Linauer, W. 1975. The potentiation of the anti-akinetic effect after L-Dopa treatment by an inhibitor of MAO-B, Deprenil, J. Neural Transm. 36:303–326.

    Google Scholar 

  17. Karoum, F., Chuang, L.-H., Eisler, T., Calne, D. B., Liebowitz, M. R., Quitkin, F. M., Klein, D. F., and Wyatt, R. J. 1982. Metabolism of (−) deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: a biochemical assessment. Neurology. 32:503–509.

    Google Scholar 

  18. Tatton, W. G., and Greenwood, C. E. 1991. Rescue of dying neurons: a new action for deprenyl in MPTP Parkinsonism. J. Neurosci. Res. 30:666–672.

    Google Scholar 

  19. Rinne, J. O., Roytta, M., Paljarvi, L., Rummukainen, J., and Rinne, U. K. 1991. Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson's disease. Neurology. 41:859–861.

    Google Scholar 

  20. Tatton, W. G., Greenwood, C. E., Seniuk, N. A., and Salo, P. T. 1992. Interactions between MPTP-induced and age-related neuronal death in a murine model of Parkinson's disease. Can. J. Neurol. Sci. 19:124–133.

    Google Scholar 

  21. Waldmeier P. C., Felner, A. E., and Maitre, L. 1981. Longterm effects on selective MAO inhibitors on MAO activity and amine metabolism. Pages 87–102,in Youdim, M. B. H., and Paykel, E. S. (eds.), Monoamine Oxidase Inhibitors — The State of the Art. John Wiley & Sons, New York.

    Google Scholar 

  22. Heinonen, E. H., Lammintausta, R. 1991. A review of the pharmacology of selegiline. Acta Neurol. Scand. 84:Suppl 136:44–59.

    Google Scholar 

  23. Yoshida, T., Yamada, Y., Yamamoto, T., and Kuroiwa, Y. 1986. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica. 16:129–136.

    Google Scholar 

  24. Zaphiropoulos, P. G., Mode, A., Norstedt, G., and Gustafsson, J.-A. 1989. Regulation of sexual differentiation in drug and steroid metabolism. Trends Pharmacol. Sci. 10:149–153.

    Google Scholar 

  25. Wu, P. H., and Dyck, L. E. 1976. Microassay for the estimation of monoamine oxidase activity. Anal. Biochem. 72:637–642.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  27. Dunnett, C. W. 1964. New tables for multiple comparisons with a control. Biometrics. 20:483–491.

    Google Scholar 

  28. Vaccari, A., Caviglia, A. Sparatore, A., and Biassoni, R. 1981. Gonadal influences on the sexual differentiation of monoamine oxidase type A and B activities in the rat brain. J. Neurochem. 37:640–648.

    Google Scholar 

  29. Vaccari, A., and Biassoni, R. 1982. Gonadal influences on the inhibition of monoamine oxidase type B activity. J. Neurosci. Res. 8:13–19.

    Google Scholar 

  30. Robinson, D. S., Sourkes, T. L., Nies, A., Harris, L. S., Spector, S., Bartlett, D. L., and Kaye, I. S. 1977. Monoamine metabolism in the human brain. Arch. Gen. Psychiat. 34:89–92.

    Google Scholar 

  31. Robinson, D. S., Davis, J. M., Nies, A., Ravaris, C. L., and Sylvester, D. 1971. Relations of sex and aging to monoamine oxidase activity of the human brain, plasma and platelets. Arch. Gen. Psychiat. 24:536–539.

    Google Scholar 

  32. Murphy, D. L., Wright, C., Buchsbaum, M., Nichols, A., Costa, J. L., and Wyatt, R. J. 1976. Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem. Med. 16:254–265.

    Google Scholar 

  33. Murphy D. L., Redmond Jr., D. E., Baulu, J., and Donnelly, C. H. 1978. Platelet monoamine oxidase activity in 116 normal Rhesus monkeys: relations between enzyme activity and age, sex and genetic factors. Comp. Biochem. Physiol. 60C:105–108.

    Google Scholar 

  34. Magyar, K., and Tothfalusi, L. 1984. Pharmacokinetic aspects of deprenyl effects. Pol. J. Pharmacol. Pharm. 36:373–384.

    Google Scholar 

  35. Felner, A. E., and Waldmeier, P. C. 1979. Cumulative effects of irreversible MAO inhibitors in vivo. Biochem. Pharmacol. 28:995–1002.

    Google Scholar 

  36. Turkish, S., Yu, P. H., and Greenshaw, A. J. 1988. Monoamine oxidase-B inhibition: a comparison of in vivo and ex vivo measures of reversible effects. J. Neural Transm. 74:141–148.

    Google Scholar 

  37. Ekstadt, B., Magyar, K., and Knoll, J. 1979. Does the B form selective monoamine oxidase inhibitor lose selectivity by longterm treatment? Biochem. Pharmacol. 28:919–923.

    Google Scholar 

  38. Egashira, T., and Kamijo, K. 1979. Synthetic rates of monoamine oxidase in rat liver after clorgyline or deprenyl administration. Japan. J. Pharmacol. 29:677–680.

    Google Scholar 

  39. Milgram, N. W., Ivy, G. O., Head, E., Murphy, M. P., Wu, P., Ruehl, B., Yu, P., Durden, D. A., Davis, B. A., Paterson, I. A., and Boulton, A. A. 1992. The effect of l-deprenyl on biogenic amines, behavior and cognitive function in the dog (submitted).

  40. Salonen, J. S. 1990. Determination of the amine metabolites of selegiline in biological fluids by capillary gas chromatography. J. Chromatog. 527:163–166.

    Google Scholar 

  41. Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M. Y. 1991. Inhibition of monoamine oxidase-B by (−)-deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J. Pharmacol. Exp. Ther. 258:1019–1026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, M.P., Wu, P.H., Milgram, N.W. et al. Monoamine oxidase inhibition byl-deprenyl depends on both sex and route of administration in the rat. Neurochem Res 18, 1299–1304 (1993). https://doi.org/10.1007/BF00975051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00975051

Key Words

Navigation