Skip to main content
Log in

Nuclear benzodiazepine binding: Possible interaction with thyroid hormone receptors

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Squires, R. F., and Braestrup, C. 1977. Benzodiazepine receptors in rat brain. Nature 266:732–734.

    Google Scholar 

  2. Braestrup, C., and Squires, R. F. 1977. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding. Proc. Natl. Acad. Sci. USA 74:3805–3809.

    Google Scholar 

  3. Braestrup, C., Albrechtsen, R., and Squires, R. F. 1977. High densities of benzodiazepine receptors in human cortical areas. Nature 269:702–704.

    Google Scholar 

  4. Mohler, H., and Okada, T. 1977. Properties of [3H]diazepam binding to benzodiazepine receptors in rat cerebral cortex. Life Sci. 20:2101–2110.

    Google Scholar 

  5. Mohler, H., and Okada, T. 1978. Biochemical identification of the site of action of benzodiazepines in human brain by [3H]diazepam binding. Life Sci. 22:985–996.

    Google Scholar 

  6. Speth, R. C., Wastek, G. J., Johnson, P. C., and Yamamura, H. I. 1978. Benzodiazepine binding in human brain: Characterization using [3H]flunitrazepam, Life Sci. 22:859–866.

    Google Scholar 

  7. Olsen, R. W. 1981. GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem. 37:1–13.

    Google Scholar 

  8. Placheta, P., and Karobath, M. 1979. Regional distribution of Na+-independent GABA and benzodiazepine binding sites in rat CNA. Brain Res. 178:580–583.

    Google Scholar 

  9. Schoemaker, H., Bliss, M., and Yamamura, H. I. 1981. Specific high-affinity saturable binding of [3H]Ro5-4864 to benzodiazepine binding sites in the rat cerebral cortex. Eur. J. Pharmacol. 71:173–175.

    Google Scholar 

  10. Skolnick, P., Marangos, P. J., Goodwin, F. K., Edwards, M., and Paul, S. 1978. Identification of inosine and hypoxanthine as endogenous inhibitors of [3H]diazepam binding in the central nervous system. Life Sci. 23:1473–1480.

    Google Scholar 

  11. Asano, T., and Spector, S. 1979. Identification of inosine and hypoxanthine as endogenous ligands for the brain benzodiazepine-binding sites. Proc. Natl. Acad. Sci. USA 76:977–981.

    Google Scholar 

  12. Marangos, P. J., Paul, S. M., Parma, A. M., Goodwind, F. K., Syapin, P., and Skolnick, P. 1979. Purinergic inhibition of diazepam binding to rat brain (in vitro). Life Sci. 24:851–858.

    Google Scholar 

  13. Slater, P., and Longman, D. A. 1979. Effects of diazepam and muscimol on GABA-mediated neurotransmission: Interaction with inosine and nicotinamide. Life Sci. 25:1963–1967.

    Google Scholar 

  14. Skerritt, J. H., Chow, S. C., Johnston, G. A. R., and Davies, L. P. 1982. Purines interact with “central” but not “peripheral” benzodiazepine binding sites. Neursci. Lett. 34:63–68.

    Google Scholar 

  15. Nagy, A., and Lajtha, A. 1983. Thyroid hormones and derivatives inhibit flunitrazepam binding. J. Neurochem. 40:414–417.

    Google Scholar 

  16. Medina, J. H., and De Robertis, E. 1985. Benzodiazepine receptor and thyroid hormones: In vivo and in vitro modulation. J. Neurochem. 44:1340–1344.

    Google Scholar 

  17. Bosmann, H. B., Penney, D. P., Case, K. R., and Averill, K. 1980. Diazepam receptor: Specific nuclear binding of [3H]flunitrazepam an Proc. Natl. Acad. Sci. USA 77:1195–1198.

    Google Scholar 

  18. Perez, C., Cruciani, R., Rubio, M. C., and Stefano, F. J. E. 1985. Benzodiazepine binding sites in rat submaxillary gland: Absence of markers of GABA system. Comp. Biochem. Physiol. 82C:451–456.

    Google Scholar 

  19. Matsokis, N., and Dalezios, Y. 1986. Comparative aspects of cerebellar [3H]flunitrazepam and [3H]-GABA binding. Gen. Pharmac. 17:689–693.

    Google Scholar 

  20. Wu, P. H., Phillis, J. W., and Bender, A. S. 1981. Do benzodiazepines bind at adenosine uptake sites in CNS? Life Sci. 28:1023–1031.

    Google Scholar 

  21. Hammond, J. R., Paterson, A. R. P., and Clanachan, A. S. 1981. Benzodiazepine inhibition of site-specific binding of nitrobenzylthioinosine, an inhibitor of adenosine transport. Life Sci. 29:2207–2214.

    Google Scholar 

  22. Eberhardt, N. L., Valcana, T., and Timiras, P. S. 1978. Triiodothyronine nuclear receptors: An in vitro comparison of the binding of triiodothyronine to nuclei of adult rat liver, cerebral hemisphere, and anterior pituitary. Endocrinology 102:556–561.

    Google Scholar 

  23. Popov, N., Pohle, W., Lossner, B., Schulzeck, S., Schmidt, S., Ott, T., and Matthies, H. 1973. Regional distribution of RNA and protein radioactivity in the rat brain after intraventricular application of labeled precursors. Acta Biol. Med. Germ. 31:51–62.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  25. Burton, K. A. 1956. Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of DNA. Biochem. J. 62:315–322.

    Google Scholar 

  26. Valcana, T. 1979. The role of triiodothyronine (T3) receptors in brain development. Pages 39–58,in Meisami, E., and Brazier, M. A. B. (eds.), Neural Growth and Differentiation, Raven Press, New York.

    Google Scholar 

  27. Anholt, R. R. H., Pedersen, P. L., DeSouza, E. B., and Snyder, S. H. 1986. The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J. Biol. Chem. 261:576–583.

    Google Scholar 

  28. Snyder, S. H., Verma, A., and Trifiletti, R. R. 1987. The peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. FA-SEB J. 1:282–288.

    Google Scholar 

  29. Snyder, S. H., McEnery, M. W., and Verma, A. 1990. Molecular mechanisms of peripheral benzodiazepine receptors. Neurochem. Res. 15:119–123.

    Google Scholar 

  30. Antkiewicz-Michaluk, L., Guidotti, A., and Krueger, K. E. 1988. Molecular characterization and mitochondrial density of a recognition site for peripheral-type benzodiazepine ligands. Molec. Pharmacol. 34:272–278.

    Google Scholar 

  31. Mukhin, A. G., Papadopoulos, V., Costa, E., and Krueger, K. E. 1989. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. Biochemistry 86:9813–9816.

    Google Scholar 

  32. Papadopoulos, V., Mukhin, A. G., Costa, E., and Krueger, K. E. 1990. The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. J. Biol. Chem. 265:3772–3779.

    Google Scholar 

  33. Phillis, J. W., Walter, G. A., and Simpson, R. E. 1991. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: Effects of the adenosine deaminase inhibitor deoxycoformycin. J. Neurochem. 56:644–650.

    Google Scholar 

  34. Skolnick, P., and Paul, S. M. 1981. The mechanism(s) of action of benzodiazepines. Medicinal Res. Rev. 1:3–22.

    Google Scholar 

  35. Friedman, H., Abernethy, D. R., Greenblatt, D. J., and Shader, R. I. 1986. The pharmacokinetics of diazepam and desmethyldlazepam in rat brain and plasma. Psychopharmacol. 88:267–270.

    Google Scholar 

  36. Phillis, J. W., and O'Regan, M. H. 1988. The role of adenosinc in the central actions of the benzodiazepines. Prog. Neuro-Psychopharmacol. and Biol. Psychiat. 12:389–404.

    Google Scholar 

  37. Klotz, U. 1991. Occurence of “natural” benzodiazepines. Life Sci. 48:209–215.

    Google Scholar 

  38. Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240:889–894.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalezios, Y., Matsokis, N. Nuclear benzodiazepine binding: Possible interaction with thyroid hormone receptors. Neurochem Res 18, 305–311 (1993). https://doi.org/10.1007/BF00969087

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969087

Key Words

Navigation