Skip to main content
Log in

3,4-Dihydroxyphenylalanine (DOPA) metabolism and retinoic acid induced differentiation in human neuroblastoma

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In mature cells of the sympathetic nervous system and the adrenal gland, the activity of dihydroxyphenylalanine decarboxylase (DDC) is higher than that of tyrosine hydroxylase and 3,4-dihydroxyphenylalanine (DOPA) does not accumulate in the cells. On the other hand, it is known that in some neuroblastoma cells there is a relative deficiency of DDC, resulting in accumulation and secretion of DOPA. Such a relative deficiency of DDC is a characteristic of neural cells at an early stage of neural crest development, suggesting the neuroblastoma are cells arrested in early neural crest development. If this were the case, it is possible that agents such as retinoic acid (RA) could induce neuroblastoma to differentiate into mature cells with respect to their metabolism of catecholamines. We have measured the effect of RA on the metabolism of DOPA and expression of tyrosine hydroxylase and DDC in human neuroblastoma cell lines, CHP-126, CHP-134, IMR-32, NB-59, and LA-N-5. When the cell cultures were treated with RA, they showed wide variations in response as measured by morphological change, growth inhibition, enzyme activities and DDC, but does not increase DDC relative to tyrosine hydroxylase. It is concluded that RA does not induce biochemical differentiation of the neuroblastoma into mature cells even when there are extensive morphological changes and suppression of growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, R. A., Spengler, B. A., and Biedler, J. L. 1983. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. Natl. Cancer Inst. 71:741–749.

    PubMed  Google Scholar 

  2. Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L., and Ross, R. A. 1989. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res. 49:219–225.

    PubMed  Google Scholar 

  3. Sugimoto, T., Sawada, T., Horii, Y., Kemshead, J. T., Hino, T., Morioka, H., and Hosoi, H. 1988. Schwannian cell differentiation of human neuroblastoma cell lines in vitro induced by bromodeoxyuridine. Cancer Res. 48:2531–2537.

    PubMed  Google Scholar 

  4. Tsokos, M., Scarpa, S., Ross, R. A., and Triche, T. J. 1987. Differentiation of human neuroblastoma recapitulates neural crest development. Am. J. Pathol. 128:484–496.

    PubMed  Google Scholar 

  5. Ross, R. A., Biedler, J. L., Spengler, B. A., and Ries, D. J. 1981. Neurotransmitter-synthesizing enzymes in 14 human neuroblastoma cell lines. Cell. Mol. Neurobiol. 1:301–312.

    PubMed  Google Scholar 

  6. Mena, M. A., de Yebenes, J. C., Dwork, A., Fahn, S., Latov, N., Herbert, J., Flaster, E., and Sionim, D. 1989. Biochemical properties of monoamine-rich human neuroblastoma cells. Brain Res. 486:286–296.

    PubMed  Google Scholar 

  7. Singh, I. N., Sorrentino, G., McCartney, D. G., Massarelli, R., and Kanfer, J. N. 1990. Enzymatic activities during differentiation of the human neuroblastoma cells, LA-N-1 and LA-N-2. J. Neurosci. Res. 25:476–485.

    PubMed  Google Scholar 

  8. Pennypacker, K. R., Kuhn, D. M., and Billingsley, M.L. 1989. Changes in expression of tyrosine hydroxylase immunoreactivity in human SMS-KCNR neuroblastoma following retinoic acid or phorbol ester-induced differentiation. Mol. Brain Res. 5:251–258.

    PubMed  Google Scholar 

  9. Cooper, J. R., Bloom, F. E., and Roth, R. H. 1982. The biochemical basis of neuropharmacology, pp. 128–135. New York, NY: Oxford University Press, Inc.

    Google Scholar 

  10. Messripour, M. and Clark, J. B. 1982. Tyrosine hydroxylase activity in rat brain synaptosomes: direct measurement using high performance liquid chromatography. J. Neurochem. 38:1139–1143.

    PubMed  Google Scholar 

  11. Nissbrandt, H., Engberg, G., Wikstrom, H., Magnusson, T., and Carlsson, A. 1988. NSD1034: an amino acid decarboxylase inhibitor with a stimulatory action on dopamine synthesis not mediated by classical dopamine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 338:148–161.

    PubMed  Google Scholar 

  12. Hirata, Y., Togari, A., and Nagasu, T. 1983. Studies on tyrosine hydroxylase system in rat brain slices using high-performance liquid chromatography with electrochemical detection. J. Neurochem. 40:1585–1589.

    PubMed  Google Scholar 

  13. Waymire, J. C. and Gilmer-Waynire, K. 1978. Adrenergic enzymes in cultured mouse neuroblastoma: absence of detectable aromatic-L-amino-acid decarboxylase. J. Neurochem. 31:693–698.

    PubMed  Google Scholar 

  14. Boomsma, F., Ausema, L., Hakvoort-cammel, F. G., Oosterom, R., Mnin'tveld, A. J., Krenning, E. P., Hahlen, K., and Schalekamp, M. A. 1989. Combined measurements of plasma aromatic L-amino acid decarboxylase and DOPA as tumour markers in diagnosis and follow-up of neuroblastoma. Eur. J. Cancer Clin. Oncol. 25:1045–1052.

    PubMed  Google Scholar 

  15. Abramowsky, C. R., Taylor, S. R., Anton, A. H., Berk, A. I., Roederer, M., and Murphy, R. F. 1989. Flow cytometry DNA ploidy analysis and catecholamine secretion profiles in neuroblastoma. Cancer. 63:1752–1756.

    PubMed  Google Scholar 

  16. Goldstein, D. S., Stull, R., Eisenhofer, G., Sisson, J. C., Weder, A., Averbuch, S. D., and Keiser, H. R. 1986. Plasma 3,4-dihydroxyphenylalanine(dopa) and catecholamines in neuroblastoma or pheochromocytoma. Ann. Intern. Med. 105:887–888.

    PubMed  Google Scholar 

  17. Gazdar, A. F., Helman, L. J., Israel, M. A., Russell, E. K., Linnoila, R. I., Mulshine, J. L., Schuller, H. M., and Park, J. 1988. Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res. 48:4078–4082.

    PubMed  Google Scholar 

  18. Yee, D. K., Pastuszko, A., Nelson, D., and Wilson, D. F. 1989. Effects of DL-2-amino-5-phosphonovalerate on metabolism of catecholamines in synaptosomes from rat brain. J. Neurochem. 52: 54–60.

    PubMed  Google Scholar 

  19. Gerhardt, G. A. 1989. Enzymatic digestion of biological samples for improved determination of monoamines and monoamine metabolites by HPLC with electrochemical detection. LC GC. 7:770–774.

    Google Scholar 

  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  21. Sidell, N., Altman A., Haussler, M. R., and Seeger, R.C. 1983. Effects of reveral human neuroblastoma cell lines. Exp. Cell Res. 148:21–30.

    PubMed  Google Scholar 

  22. Ikegaki, N., and Kennett, R. H. 1989. Glutaraldehyde fixation of the primary antibody-antigen complex on nitrocellulose paper increases the overall sensitivity of immunoblot assay. J. Immunol. Methods. 124:205–210.

    PubMed  Google Scholar 

  23. LeDouarin, N. 1982. The neural crest, pp. 212–215. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Bronner-Fraser, M. and Fraser, S. E. 1988. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature. 335: 161–164.

    PubMed  Google Scholar 

  25. Baroffio, A., Dupin, E., and Le Douarin, N. M. 1988. Clone-forming ability and differentiation potential of migratory neural crest cells. Proc. Natl. Acad. Sci. USA. 85:5325–5329.

    PubMed  Google Scholar 

  26. Le Douarin, N. M. 1986. Cell line segregation during peripheral nervous system ontogeny. Science. 231:1515–1522.

    PubMed  Google Scholar 

  27. Jonakait, G. M., and Black, I. B. 1988. Regulation of catecholamine development. In: Trendelenburg, U., and Weiner, N. (eds.), Catecholamines, Vol. 2, pp. 137–179. New York, NY: Springer-Verlag.

    Google Scholar 

  28. Teitelman, G., Jaeger, C. B., Albert, V., Joh, T. H., and Reis, D. J. 1983. Expression of amino acid decarboxylase in proliferating cells of the neural tube and notochord of developing rat embryo. J. Neurosci. 3:1379–1388.

    PubMed  Google Scholar 

  29. Blomhoff, R., Green, M. H., Berg, T., and Norum K. R. 1990. Transport and storage of vitamin A. Science 250:399–404.

    PubMed  Google Scholar 

  30. Petkovich, M., Brand, N. J., Krust, A., and Chambon, P. 1987. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 330:444–450.

    PubMed  Google Scholar 

  31. Giguere, V., Ong, E. S., Segui, P., and Evans, R. M. 1987. Identification of a receptor for the morphogen retinoic acid. Nature. 330:624–629.

    PubMed  Google Scholar 

  32. de The, H., Vivanco-Ruiz, M. M., Tiollais, P., Stunnenberg, H., and Dejean, A. 1990. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343:177–180.

    PubMed  Google Scholar 

  33. Chiocca, E. A., Davies, P. J. A., and Stein, J. P. 1988. The molecular basis of retinoic acid action. J. Biol. Chem. 263:11584–11589.

    Google Scholar 

  34. Masserano, J. M., Vulliet, P. R., tank, A. W., and Weiner, N. 1988. The role of tyrosine hydroxylase in the regulation of catecholamine synthesis. In: Trendelenburg, U., and Weiner, N. (eds.), Catecholamines, Vol. 2, pp. 427–469. New York, NY: Springer-Verlag.

    Google Scholar 

  35. Makowske, M., Ballester, R., Cayre, Y. and Rosen, O. M. 1988. Immunochemical evidence that three protein kinase C isozymes increase in abundance during HL-60 differentiation induced by dimethyl sulfoxide and retinoic acid. J. Biol. Chem. 263:3402–3410.

    PubMed  Google Scholar 

  36. Pratt, M. A. C., Kralova, J., and McBurney, M. W. 1990. A dominant negative mutation of the alpha retinoic acid receptor gene in a retinoic acid-nonresponsive embryonal carcinoma cell. Mol. Cell. Biol. 10:6445–6453.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, H., Pastuszko, A., Ikegaki, N. et al. 3,4-Dihydroxyphenylalanine (DOPA) metabolism and retinoic acid induced differentiation in human neuroblastoma. Neurochem Res 19, 1487–1494 (1994). https://doi.org/10.1007/BF00968995

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968995

Key Words

Navigation