Skip to main content
Log in

Influence of isolation media on synaptosomal properties: Intracellular pH, pCa, and Ca2+ uptake

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about −50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2′, 4′ dimethylbenzamil (DMB), at 30 μM, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2′, 4′ dimethylbenzamil (CBZ-DMB), at 30 μM, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCECF:

2,7-Biscarboxyethyl-5(6)-carboxyfluorescein

BCECF/AM:

acetoxymethyl ester of BCECF

[Ca2+]i :

Internal free calcium ion concentration

CBZ-DMB:

5-(N-4-chlorobenzyl)-2′,4′-dimethylbenzamil

DMB:

2′, 4′-dimethylbenzamil

DMSO:

dimethyl sulfoxide

Indo-1/AM:

acetoxymethyl ester of Indo-1

MES:

2-|N-Morpholino|ethanesulfonic acid

NMG:

N-methyl-D-glucamine

pHi :

internal pH

TPP+ :

tetraphenylphosphonium

ΔΨp :

plasma membrane potential

References

  1. Hajós, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–489.

    Google Scholar 

  2. Booth, R. F. G. and Clark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.

    Google Scholar 

  3. Blaustein, M. P. 1975. Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminalsin vitro. J. Physiol. 247:617–655.

    Google Scholar 

  4. Raiteri, M., and Levi, G. 1978. Release mechanisms for catecholamines and serotonin in synaptosomes Pages 77–130, in Erhenpreis, S., and Kopin, I. J., (eds), Reviews in Neuroscience, vol. 3, Raven Press, New York.

    Google Scholar 

  5. Gray, E. G., and Whittaker, V. P. 1962. The isolation of nerve endings from brain: an electron-microscopic study of the cell fragments derived by homogenization and centrifugation. J. Anat. 96:79–88.

    Google Scholar 

  6. De Robertis, E., Iraldi, A. P., Arnaiz, G. R. L., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. J. Neurochem. 9:23–25.

    Google Scholar 

  7. Carvalho, A. P., Santos, M. S., Henriques, A. O., Tavares, P., and Carvalho, C. M. 1988. Calcium channels and Na+/Ca2+ exchange in synaptosomes. Pages 263–284, in Zimmermann, H. (ed.) Cellular and Molecular Basis of Synaptic Transmission, Vol H21 Springer-Verlag, Berlin.

    Google Scholar 

  8. Krueger, B. K., Ratzlaff, R. W., Strichartz, G. R., and Blaustein, M. P. 1979. Saxitoxin binding to synaptosomes, membranes and solubilized binding sites from rat brain. J. Membrane Biol. 50:287–310.

    Google Scholar 

  9. Carvalho, C. A. M., Duarte, C. B., Santos, D. L., Cragoe, E. J. Jr, and Carvalho, A. P. 1989. Pages 133–136, Calcium uptake by synaptosomes with low and high Na+ content and effect of Ca2+ antagonists, in Reid, E. et al. (eds.) Methodological Surveys in Biochemistry and Analysis, vol. 19. Royal Society of Chemistry, London.

    Google Scholar 

  10. Carvalho, C. A. M. and Carvalho, A. P. 1979. Effect of temperature and ionophores on the permeability of synaptosomes. J. Neurochem. 33:309–317.

    Google Scholar 

  11. Layne, E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins. Pages 447–451,in Colowick S. P. and Kaplan N. O., (eds.) Methods in Enzymology, vol. 3, Acad. Press, New York.

    Google Scholar 

  12. Swanson, M. A. 1955. Glucose-6-phosphatase from liver. Pages 541–543, in Colowick, S. P. and Kaplan, N. O. (eds.), Methods in Enzymology, vol. 2. Acad. Press, New York.

    Google Scholar 

  13. Taussky, H. H., and Shorr, E. 1953. A microcolorimetric method for the determination of inorganic phosphorus J. Biol. Chem. 202:675–685.

    Google Scholar 

  14. Rink, T. J., Tsien, R. Y., and Pozzan, T. 1982. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95:189–196.

    Google Scholar 

  15. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A New Generation of Ca2+ Indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    Google Scholar 

  16. Gelfand, E. W., Cheung, R. K. and Grinstein, S. (1986) Mitogen-induced changes in Ca2+ permeability are not mediated by voltage-gated K+ channels. J. Biol. Chem. 261:11520–11523.

    Google Scholar 

  17. Henriques, A. O., Tavares, P. E., and Carvalho, C. A. M. 1988. Measurements of membrane potentials in synaptosomes. Ciênc. Biol. Mol. Cell. Biol. (Portugal) 13:15–25.

    Google Scholar 

  18. Muratsugu, M., Kamo, N., Kurihara, K. and Kobatake, Y. 1977. Selective electrode for dibenzyl dimethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim. Biophys. Acta 464:613–619.

    Google Scholar 

  19. Carvalho, C. A. M., Coutinho, O. P., and Carvalho, A. P. 1986. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. J. Neurochem. 47:1774–1784.

    Google Scholar 

  20. Jones, D. H., and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta 356:276–287.

    Google Scholar 

  21. Nordlie, R. C., and Arion, W. J. 1966. Glucose-6-phosphatase. Pages 619–625, in Colowick S. P. and Kaplan N. O. (eds.), Methods in Enzymology, vol. 9. Academic Press, New York.

    Google Scholar 

  22. Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. 1977. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J. Neurochem. 28:625–631.

    Google Scholar 

  23. Tamir, H., Rapport, M. M., and Roizin, L. 1974. Preparation of synaptosomes and vesicles with sodium diatrizoate. J. Neurochem. 23:943–949.

    Google Scholar 

  24. Coutinho, O. P., Carvalho, C. A. M., and Carvalho, A. P. 1984. Calcium uptake related to K+-depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes. Brain Res. 290:261–271.

    Google Scholar 

  25. Kaczorowski, G. J., Barros, F., Dethmers, J. K., and Trumble, M. J. 1985. Inhibition of Na+/Ca2+ exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry 24:1394–1403.

    Google Scholar 

  26. Richards, C. D., Metcalfe, J. C., Smith, G. A., and Hesketh, T. R. 1984. Changes in free calcium levels and pH in synaptosomes during transmitter release. Biochim. Biophys. Acta 803:215–220.

    Google Scholar 

  27. Roos, A., and Boron, W. F. 1981. Intracellular pH. Phys. Rev. 61:296–434.

    Google Scholar 

  28. Sauvaigo, S., Vigne, P., Frelin, C., and Lazdunski, M. (1984). Identification of an amiloride sensitive Na+/H+ exchange system in brain synaptosomes. Brain Res. 301:371–374.

    Google Scholar 

  29. Davis, M. H., Altschuld, R. A., Jung, D. W., and Brierley, G. P. 1987. Estimation of intramitochondrial pCa and pH by fura-2 and 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochem. Biophys. Res. Commun. 149:40–45.

    Google Scholar 

  30. Verhage, M., Besselsen, E., Da Silva, F. H. L., and Ghijsen, W. J. M. 1988. Evaluation of the Ca2+ concentration in purified nerve terminals: relationship between Ca2+ homeostasis and synaptosomal preparation. J. Neurochem. 51:1667–1674.

    Google Scholar 

  31. Thayer, S. A., Murphy, S. N., and Miller, R. J. 1986. Widespread distribution of dihydropyridine-sensitive calcium channels in the central nerve system. Mol. Pharmacol. 30:505–509.

    Google Scholar 

  32. Tatsumi, H., Hirai, K., and Katayama, Y. 1988. Measurements of the intracellular calcium concentration in guinea-pig myenteric neurons by using fura-2. Brain Res. 451:371–375.

    Google Scholar 

  33. Komulainen, H. and Bondy, S. C. 1987. The estimation of free calcium within synaptosomes and mitochondria with fura-2; comparison with quin-2. Neurochem. Int. 10:55–64.

    Google Scholar 

  34. Nachshen, D. A., Sanchez-Armass, S., and Weinstein, A. M. 1986. The regulation of cytosolic calcium in rat brain synaptosomes by sodium-dependent calcium efflux. J. Physiol. 381:17–28.

    Google Scholar 

  35. Suszkiw, J. B., O'Leory, M. F., Murowsky, M. M., and Wang, T. 1986. Presynaptic calcium channels in rat cortical synaptosomes: fast-kinetics of phasic calcium influx, channel inactivation, and relationship to nitrendipine receptors. J. Neurocsci. 6:1349–1357.

    Google Scholar 

  36. Blaustein, M. P., and Oborn, C. J. 1975. The influence of sodium on calcium fluxes in pinched-off nerve terminalsin vitro. J. Physiol. 247:657–686.

    Google Scholar 

  37. Rahamimoff, H., Barzilai, A., Erdreich, A., and Spainer, R. (1986). Molecular properties of isolated Ca2+ transport systems from nerve terminals. Pages 47–63, in Rahamimoff, R. and Katz, B., (eds.) Calcium, Neuronal Function and Transmitter Release. Martins Nijhoff Publishing, Boston.

    Google Scholar 

  38. Kleyman, T. R., and Cragoe, E. J. Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21.

    Google Scholar 

  39. Moody, W. Jr. 1984. Effects of intracellular H+ on the electrical properties of excitable cells. Ann. Rev. Neurosci. 7:257–278.

    Google Scholar 

  40. Madshers, I. H. 1988. Regulation of intracellular pH in eukaryotic cells. Biochem. J. 250:1–8.

    Google Scholar 

  41. Breitwieser, G. E., Altamirano, A. A., and Russell, J. M., 1987. Effects of pH changes on sodium pump fluxes in squid giant axon. Am. J. Physiol. 253:C547-C554.

    Google Scholar 

  42. Santos, M. S. V. 1981. Effects of pH gradient on serotonin transport by synaptosomes. Ciênc. Biol. Mol. Cell. Biol. (Portugal) 6:111–119.

    Google Scholar 

  43. Yanagihara, N., Yokota, K., Wada, A., and Izumi, F. 1987. Intracellular pH and catecholamine synthesis in cultured bovine adrenal medullary cells: Effect of extracellular Na+ removal. J. Neurochem. 49:1740–1746.

    Google Scholar 

  44. Gandorias, J. M., Casis, E., Ramirez, M., Zulaica, J., and Casis, L. 1988. Niveles de actividad y pH optimo de actuacion de algunos enzimas proteoliticos cerebrales. Cuad. Invest. Biol. (Bilbao) 13:9–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandeira-Duarte, C., Carvalho, C.A.M., Cragoe, E.J. et al. Influence of isolation media on synaptosomal properties: Intracellular pH, pCa, and Ca2+ uptake. Neurochem Res 15, 313–320 (1990). https://doi.org/10.1007/BF00968678

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968678

Key Words

Navigation