Skip to main content
Log in

Developmental dissociation of myelin synthesis and “myelin-associated” enzyme activities in the shiverer mouse

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Developmental changes in three enzymes associated with myelin lipids were studied in the shiverer mouse, a murine mutant showing a severe deficiency of CNS myelin. Age-related changes in cerebroside sulfotransferase (measured in brain) and arylsulfatase A and cerebroside B-galactosidase (measured in brain and liver) were the same for shiverer and control mice. The shiverer mouse, therefore, demonstrates a dissociation between the genetic mechanisms regulating myelination in the CNS and developmental changes in enzyme activities thought to be closely related to the synthesis of myelin. In addition, we found no defect in the shiverer mouse in the incorporation of glycine-labeled basic protein into CNS myelin, indicating an important metabolic difference between the morphologically similar shiverer and quaking mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, T. D., Farrell, D. F., andSumi, S. M. 1978. Brain lipid composition of the shiverer mouse: (genetic defect in myelin development). J. Neurochem. 31:387–391.

    Google Scholar 

  2. Farrell, D. F., andMcKhann, G. M. 1971. Characterization of cerebroside sulfotransferase from rat brain. J. Biol. Chem. 246:4694–4702.

    Google Scholar 

  3. Farrell, D. F. 1974. Enzymatic sulfation of some galactose-containing sphingolipids in developing rat brain. J. Neurochem. 23:219–225.

    Google Scholar 

  4. Farrell, D. F., Percy, A. K., Kaback, M. M., andMcKhann, G. M. 1973. Globoid cell (Krabbe's) leukodystrophy: Heterozygote detection in cultured skin fibroblasts. Am. J. Hum. Genet. 25:604–609.

    Google Scholar 

  5. Farrell, D. F., Baker, H. J., Herndon, R. M., Lindsey, J. R., andMcKhann, G. M. 1973. Feline GM1 gangliosidosis: Biochemical and ultrastructural comparisons with the disease in man. J. Neuropathol. Exp. Neurol. 32:1–18.

    Google Scholar 

  6. Lowry, O. H., Rosebrough, N. F., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  7. Greenfield, S., Brostoff, S., andHogan, E. 1977. Evidence for defective incorporation of proteins in myelin of the quaking mutant mouse, Brain Res. 120:507–515.

    Google Scholar 

  8. Benjamins, J. A., Herschkowitz, N., Robinson, J., andMcKhann, G. M. 1971. The effects of inhibitors of protein synthesis on incorporation of lipids into myelin. J. Neurochem. 18:729–738.

    Google Scholar 

  9. Norton, W. T. andPoduslo, S. E. 1973. Myelination in rat brain: Method of myelin isolation. J. Neurochem. 21:749–757.

    Google Scholar 

  10. Gonzales-Sastre, F. 1970. The protein composition of isolated myelin. J. Neurochem. 17:1049–1056.

    Google Scholar 

  11. Greenfield, S., Norton, W. T., andMorrell, P. 1971. Quaking mouse: Isolation and characterization of myelin protein, J. Neurochem. 18:2119–2128.

    Google Scholar 

  12. Deibler, G. E., Martenson, R. E., andKies, M. W. 1972. Large scale preparation of myelin basic protein from central nervous system tissue of several mammalian species. Prep. Biochem. 2:139–165.

    Google Scholar 

  13. Weber, K., andOsborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.

    Google Scholar 

  14. Baumann, G., andChrambach, A. 1976. A highly crosslinked, transparent polyacrylamide gel with improved mechanical stability for use in isoelectric focusing and isotachophoresis. Anal. Biochem. 70:32–38.

    Google Scholar 

  15. Felton, J., Meisler, M., andPaigen, K. 1974. A locus determining β-galactosidase activity in the mouse. J. Biol. Chem. 249:3267–3272.

    Google Scholar 

  16. Bowen, D. M. andRadin, N. S. 1969. Hydrolase activities in brain of neurological mutants. Cerebroside galactosidase, nitrophenyl galactoside hydrolase, nitrophenyl glucoside hydrolase and sulfatase. J. Neurochem. 16:457–460.

    Google Scholar 

  17. Kurtz, D. J. andKanfer, J. N. 1970. Cerebral acid hydrolase activities: Comparison in quaking and normal mice. Science 168:259–260.

    Google Scholar 

  18. Sarlieve, L. L., Farooqui, A. A., Rebel, G., andMandel, P. 1976. Arylsulfatase A and 2′, 3′-cyclic nucleotide 3′-phosphohydrolase activities in the brains of myelin deficient mutant mice. Neuroscience 1:519–522.

    Google Scholar 

  19. Sarlieve, L. L., Neskovic, N. M., andMandel, P. 1971. PAPS-cerebroside sulfotransferase activity in brain and kidney of neurological mutants. FEBS Lett. 19:91–95.

    Google Scholar 

  20. Kanfer, J. N., andStein, M. 1972. Sulfatide biosynthesis by intact microsomes and Triton extracts of normal and quaking mouse brain. Lipids 7:259–261.

    Google Scholar 

  21. Neskovic, N., Nussbaum, J. L., andMandel, P. 1970. A study of glycolipid metabolism in myelination disorders of jimpy and quaking mice. Brain Res. 21:39–53.

    Google Scholar 

  22. Zalc, B., Pollet, S. A., Harpin, M., andBaumann, N. 1974. Ceramide biosynthesis in mouse brain microsomes: Comparison between C57/BL controls and quaking mutants. Brain Res. 81:511–518.

    Google Scholar 

  23. Brostoff, S. W., Greenfield, S., andHogan, E. L. 1977. The differentiation of synthesis from incorporation of basic protein in quaking mutant mouse myelin. Brain Res. 120:517–520.

    Google Scholar 

  24. Greenfield, S., Williams, N. I., White, M., Brostoff, S. W., andHogan, E. L. 1979. Proteolipid protein: Synthesis and assembly into quaking mouse myelin. J. Neurochem. 32:1647–1651.

    Google Scholar 

  25. Dupouey, P., Jacque, C., Bourre, J. M., Cesselin, F., Privat, A., andBaumann, N. 1979. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci. Lett. 12:113–118.

    Google Scholar 

  26. McKhann, G. M., andHo, W. 1967. The in vivo and in vitro synthesis of sulfatides during development. J. Neurochem. 14:717–724.

    Google Scholar 

  27. Benjamins, J. A., andSmith M. E. 1977. Metabolism of myelin. Pages 234–240,in Morrell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  28. Dawson, G. 1979. Regulation of glycosphingolipid metabolism in mouse neuroblastoma and glioma cell lines. J. Biol. Chem. 254:155–162.

    Google Scholar 

  29. Burkart, T., Wiesmann, U. N., andHerschkowitz, N. N. 1977. Arylsulfatase A in developing normal and jimpy mice. Neuroscience 2:175–180.

    Google Scholar 

  30. Sarlieve, L. L., Neskovic, N. M., Rebel, G., andMandel, P. 1972. Some properties of brain PAPS-cerebroside sulfotransferase in jimpy and quaking mice. Neurobiology 2:70–82.

    Google Scholar 

  31. Kurihara, T., Nussbaum, J. L., andMandel, P. 1970. 2′,3′-Cyclic nucleotide 3′-phosphohydrolase in brains of mutant mice with deficient myelination. J. Neurochem. 17:993–997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, T.D., Farrell, D.F., Stranahan, S. et al. Developmental dissociation of myelin synthesis and “myelin-associated” enzyme activities in the shiverer mouse. Neurochem Res 5, 885–895 (1980). https://doi.org/10.1007/BF00965788

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965788

Keywords

Navigation