Skip to main content
Log in

Genetic control of developmental patterns of cerebral enzyme activities: Further differences between C3H and ICR strains of mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have investigated developmental changes in activity for five enzymes associated with different cerebral metabolic systems in two separate strains of mice. The enzymes studied were acid β-galactosidase, arylsulfatase A, cerebroside β-galactosidase, cerebroside sulfotransferase, and glutamate decarboxylase. The two strains of mice were C3H/SWV and ICR/SWV. We confirm the experiments of Meisler, Paigen, and colleagues showing higher acid β-galactosidase activity throughout development in C3H mice. In addition we have demonstrated higher arylsulfatase A activity throughout development in C3H mice. The shape of the developmental curve for arylsulfatase A activity in brain in the two strains was similar. There were no differences in developmental changes of activity between the two strains for the other three enzymes studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, F. G., Paigen, K., andMeisler, M. 1978. Regulation of the rate of betagalactsidase synthesis by theBgs andBgt loci in the mouse. J. Biol. Chem. 253:5280–5282.

    PubMed  Google Scholar 

  2. Bird, T. D. 1976. Normal glutamic acid decarboxylase activity in kidney tissue from patients with Huntington's disease. J. Neurochem. 27:1555–1557.

    PubMed  Google Scholar 

  3. Collins, R. L. 1972. Audiogenic seizures. Pages 347–372,in Purpura, D. P., Penry, J. K., Woodbury, D. M. (eds.), Experimental Models of Epilepsy, Raven Press, New York.

    Google Scholar 

  4. Daniel, W. L. 1976. Genetic control of heat sensitivity and activity level of murine arylsulfatase B. Biochem. Genet. 14:1003–1018.

    PubMed  Google Scholar 

  5. Farrell, D. F. 1974. Enzymatic sulfation of some galactose containing sphingolipids in developing rat brain. J. Neurochem. 23:219–225.

    PubMed  Google Scholar 

  6. Farrell, D. F. andMcKhann, G. M. 1971. Characterization of cerebroside sulfotransferase from rat brain. J. Biol. Chem. 246:4694–4702.

    PubMed  Google Scholar 

  7. Farrell, D. F., Baker, H. J., Herndon, R. M., Lindsey, J. R., andMcKhann, G. M. 1973. Feline GM1 gangliosidosis: Biochemical and ultrastructural comparisons with the disease in man. J. Neuropathol. Exp. Neurol. 32:1–18.

    PubMed  Google Scholar 

  8. Farrell, D. F., Percy, A. K., Kaback, M. M., andMcKhann, G. M. 1973. Globoid cell (Krabbe's) leukodystrophy: Heterozygote detection in cultured skin fibroblasts. Am. J. Hum. Genet. 25:604–609.

    PubMed  Google Scholar 

  9. Felton, J., Meisler, M., andPaigen, K. 1974. A locus determining beta-galactosidase activity in the mouse. J. Biol. Chem. 249:3267–3272.

    PubMed  Google Scholar 

  10. Ferrendelli, J. A. andMcDougal, D. B. 1971. The effect of audiogenic seizures on regional CNS energy recerves, glycolysis and citric acid cycle flux. J. Neurochem. 18:1207–1220.

    PubMed  Google Scholar 

  11. Fischer, G., andJatzkewity, H. 1977. The activator of cerebroside sulfatase: Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein. Biochem. Biophys. Acta 481:561–572.

    PubMed  Google Scholar 

  12. Ganschow, R., andPaigen, K. 1968. Glucuronidase phenotypes of inbred mouse strains. Genetics 59:335–349.

    PubMed  Google Scholar 

  13. Hertz, L., Schousboe, A., Formby, B., andLennox-Buchthal, M. 1974. Some agedependent biochemical changes in mice susceptible to seizures. Epilepsia 15:619–631.

    PubMed  Google Scholar 

  14. Hors-Cayla, M. C., Heuertz, S., van Cong, N., Weil, D., andFrezal, J. 1979. Confirmation of the assignment of the gene for arylsulfatase A to chromosome 22 using somatic cell hybrids. Hum. Genet. 49:33–39.

    PubMed  Google Scholar 

  15. Lowry, D. H., Rosebrough, N. F., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  16. Ludin, L. G., andSeyedyazdani, R. 1973. Mendelian inheritance of variations in betagalactosidase activities in the house mouse. Biochem. Genet. 10:351–361.

    PubMed  Google Scholar 

  17. McKusick, V. A. 1976. Mendelian Inheritance in Man. Pages lxxiii, lxxvi, 510, 582. Johns Hopkins Press, Baltimore.

    Google Scholar 

  18. Meisler, M. H. 1976. Effects of theBgs locus on mouse beta-galactosidase. Biochem. Genet. 14:921–932.

    PubMed  Google Scholar 

  19. Meisler, M., andPaigen, K. 1972. Coordinated development of beta-glucuronidase and beta-galactosidase in mouse organs. Science 177:894–896.

    PubMed  Google Scholar 

  20. Paigen, K., Meisler, M., Felton, J., andChapman, V. 1976. Genetic determination of the beta-galactosidase developmental program in mouse liver. Cell 9:533–539.

    PubMed  Google Scholar 

  21. Sidman, R. L., andGreen, M. C. 1965. Retinal degeneration in the mouse: Location of therd locus in linkage group XVII. J. Hered. 56:23–29.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, T.D., Farrell, D.F. & Stranahan, S. Genetic control of developmental patterns of cerebral enzyme activities: Further differences between C3H and ICR strains of mice. Neurochem Res 6, 863–871 (1981). https://doi.org/10.1007/BF00965044

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965044

Keywords

Navigation