Skip to main content
Log in

Myelination of regenerating sciatic nerve of the rat: Lipid components and synthesis of myelin lipids

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Changes of lipid, free fatty acid, protein, DNA, and RNA content in proximal and distal segments of regenerating sciatic nerve, from 14 to 120 days after crush, were determined. During the early stage of Wallerian degeneration, a marked decrease of phospholipid, cerebroside and sulfatide content and, in contrast, a marked increase of protein, DNA, RNA, and free fatty acid content, in the distal segment of crushed nerve compared to control, was observed. A gradual increase of phospholipid, cerebroside, and sulfatide levels, approaching normal values, and a gradual slope in the increase of protein, DNA, RNA, and free fatty acid levels over the ensuing time periods of regeneration was seen. Total cholesterol content was relatively constant during regeneration, slightly increasing at day 120. The activity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) of myelin fraction purified from distal segment of regenerating sciatic nerve showed a significant increase in the 30–120 day regenerating period. A marked increase of the incorporation of [2-3H]glycerol and of [Me-14C]choline into myelin lipids of distal segment of regenerating nerve, was found. Labeling of myelin lipids with [3H]oleic acid (injected intravenously seven days before crush) support the evidence that a similar pattern of degeneration exists between two different types of trauma, i.e. nerve crush or cut. The findings suggest that, in the distal segment of crushed nerve, the lipid content as well as the myelin lipid synthesis increase as the regeneration period proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberghina, M., andGiuffrida, A. M. 1981. Effect of hypoxia on the incorporation of [2-3H]glycerol and [1-14C]palmitate into lipids of various brain regions. J. Neurosc. Res. 6:403–419.

    Google Scholar 

  2. Alberghina, M., Moschella, F., Viola, M., Brancati, V., Micali, G., andGiuffrida, A. M. 1982. Changes in rapid transport of phospholipids in the rat sciatic nerve during axonal regeneration. J. Neurochem., In press.

  3. Alberghina, M., Viola, M., Moschella, F., andGiuffrida, A. M. 1982-b. Pattern of myelination along the rat sciatic nerve during regeneration. I. Nerve lipid components and myelin lipid synthesis. Proc. 4th Meeting of ESN, Catania, 12–18 Sept.

  4. Asbury, A. K. 1967. Schwann cell proliferation in developing mouse sciatic nerve. J. Cell. Biol. 34:735–743.

    Google Scholar 

  5. Bhandaru, R. R., Srinivasan, S. R., Paragaonkar, P. S., andBerenson, G. S. 1977. A simplified colorimetric micromethod for determination of serum cholesterol. Lipids 12:1078–1080.

    Google Scholar 

  6. Borch, R. F. 1975. Separation of long chain fatty acids as phenacylesters by high pressure liquid chromatography. Anal. Chem. 47:2437–2439.

    Google Scholar 

  7. Braun, P. E., andBarchi, R. L. 1972. 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the nervous system. Electrophoretic properties and developmental studies. Brain Res. 40:437–444.

    Google Scholar 

  8. Cragg, B. G., andThomas, P. K. 1964. The conduction velocity of regenerated peripheral nerve fibers. J. Physiol. (London) 171:164–175.

    Google Scholar 

  9. Devor, M., andGovrin-Lippmann, R. 1979. Maturation of axonal sprouts after nerve crush. Exp. Neurol. 64:260–270.

    Google Scholar 

  10. Gershenbaum, M. R., andRoisen, F. J. 1978. A scanning electron microscopic study of peripheral nerve. Degeneration and regeneration. Neuroscience 3:1241–1250.

    Google Scholar 

  11. Gould, R. M., andDawson, R. M. C. 1976. Incorporation of newly formed lecithin into peripheral nerve myelin. J. Cell Biol. 68:480–496.

    Google Scholar 

  12. Gutmann, E., andSanders, F. K. 1943. Recovery of fibre numbers and diameters in the regeneration of peripheral nerves. J. Physiol. (London) 101:489–518.

    Google Scholar 

  13. Hauser, G. 1968. Cerebrosides and sulphatide levels in developing rat brain. J. Neurochem. 15:1237–1238.

    Google Scholar 

  14. Hess, H. H., andDerr, J. E. 1975. Assay of inorganic and organic phosphorus in the 0.1–5 nmole range. Anal. Biochem. 63:607–613.

    Google Scholar 

  15. Hirose, G., andBass, N. H. 1973. Maturation of oligodendroglia and myelinogenesis in rat optic nerve: a quantitative histochemical study. J. Comp. Neurol. 152:201–210.

    Google Scholar 

  16. Hofteig, J. H., Vo, P. N., andYates, A. J. 1981. Wallerian degeneration of peripheral nerve. Age-dependent loss of nerve lipids. Acta Neuropathol. (Ber.), 55:151–156.

    Google Scholar 

  17. Hron, W. T., andMenahan, L. A. 1981. A sensitive method for the determination of free fatty acids in plasma. J. Lipid Res. 22:377–381.

    Google Scholar 

  18. Klein, F. 1980. Lipid changes in the normal proximal and distal stumps of the rat sciatic nerve and during Wallerian degeneration. Biochemie 62:181–184.

    Google Scholar 

  19. Lowry, O. H., Rosebrough, H. J., Farr, A., andRandall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  20. Lubińska, L. 1959. Region of transition between preserved and regenerating parts of myelinated nerve fibers. J. Comp. Neurol. 113:315–335.

    Google Scholar 

  21. Matthews, M. A. 1968. An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anat. Rec. 161:337–352.

    Google Scholar 

  22. Matthieu, J. M., Costantino-Ceccarini, E., Beny, M., andReigner, J. 1980. Evidence for the association of 2′,3′-cyclic-nucleotide 3′-phosphodiesterase with myelin-related membranes in peripheral nervous system. J. Neurochem. 35:1345–1350.

    Google Scholar 

  23. Mezei, C., Mezei, M., andHawkins, A. 1974. 2′,3′-cyclic AMP 3′-phosphohydrolase activity during Wallerian degeneration. J. Neurochem. 22:457–458.

    Google Scholar 

  24. Michell, R. H., Hawthorne, J. N., Coleman, R., andKarnovsky, M. L. 1970. Extraction of phosphoinositides with neutral and acidified solvents. A comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction. Biochim. Biophys. Acta 210:86–91.

    Google Scholar 

  25. Mira, J. C. 1976. Etudes quantitative sur la régénération des fibres nervous myelinisées. II. Variations du nombre et du calibre des fibres régénérées après un écrasement ou une section du nerf. Arch. Anat. Microsc. Morphol. Exp. 65:255–284.

    Google Scholar 

  26. Noback, C. R., andReilly, J. A. 1956. Myelin sheath during degeneration and regeneration. II. Histochemistry. J. Comp. Neurol. 105:333–348.

    Google Scholar 

  27. Norton, W. T., andPoduslo, S. E. 1973. Myelination in rat brain: changes in myelin composition during brain maturation. J. Neurochem. 21:759–773.

    Google Scholar 

  28. Oderfeld-Nowak, B., andNiemenko, S. 1969. Synthesis of nucleic acids in the Schwann cells as the early cellular response to nerve injury. J. Neurochem. 16:235–248.

    Google Scholar 

  29. Oulevey, J., Bodden, E., andThiele, O. W. 1977. Quantitative determination of glycosphingolipids illustrated by using erytrocyte membranes of various mammalian species. Eur. J. Biochem. 79:265–267.

    Google Scholar 

  30. Passi, S., Rothschild, M. C., Fasella, P., Nazzaro-Porro, M., andWhitehouse, D. 1981. An application of high performance liquid chromatography to analysis of lipids in archaelogical samples. J. Lipid Res. 22:778–784.

    Google Scholar 

  31. Patsalos, P. N., Bell, M. E., andWiggins, R. C. 1980. Pattern of myelin breakdown during sciatic nerve Wallerian degeneration: reversal of the order of assembly. J. Cell Biol. 87:1–5.

    Google Scholar 

  32. Peterson, R. G., Baughman, S., andScheidler, D. M. 1981. Incorporation of fucose and leucine into PNS myelin proteins in nerves undergoing early Wallerian degeneration. Neurochem. Res. 6:213–223.

    Google Scholar 

  33. Rawlins, F. A., Villegas, G. M., Hedley-Whyte, E. T., andUzman, B. G. 1972. Fine structural localization of cholesterol-1,2-3H in degenerating and regenerating mouse sciatic nerve. J. Cell Biol. 52:615–625.

    Google Scholar 

  34. Rossiter, R. J. 1961. The chemistry of Wallerian degeneration. Pages 207–227,in Folch-Pi, J. (ed.), Chemical pathology of the nervous system. Pergamon Press, New York.

    Google Scholar 

  35. Sanders, F. K., andWhitteridge, D. 1946. Conduction velocity and myelin thickness in regnerating nerve fibers. J. Physiol. (London) 105:152–174.

    Google Scholar 

  36. Schmidt, G., andThannhauser, S. J. 1945. A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. Biol. Chem. 161:83–89.

    Google Scholar 

  37. Schröder, J. M. 1972. Altered ratio between diameter and myelin thickness in regenerated nerve fibers. Brain Res. 45:49–65.

    Google Scholar 

  38. Spencer, P. S., andWeinberg, J. H. 1978. Axonal specification of Schwann cell expression and myelination. Pages 389–405,in Waxman, S. (ed.), Physiology and pathology of axons, Raven Press, New York.

    Google Scholar 

  39. Sunderland, S. 1978. Nerves and Nerve injuries. Churchill-Livingstone, London.

    Google Scholar 

  40. Svennerholm, L. 1956. The quantitative estimation of cerebrosides in nervous tissue. J. Neurochem. 1:42–53.

    Google Scholar 

  41. Tsukada, Y., Nagai, K., andSuda, H. 1980. A rapid micromethod for 2′,3′-cyclic nucleotide 3′-phosphohydrolase assay using micro high performance liquid chromatography. J. Neurochem. 34:1019–1022.

    Google Scholar 

  42. Wannemacher, R. W., Jr., Banks, W. L., andWunner, W. H. 1965. Use of a single tissue extract to determine cellular protein and nucleic acid concentrations and rate of aminoacid incorporation. Anal. Biochem. 11:320–326.

    Google Scholar 

  43. Webster, H. De F. 1971. The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J. Cell Biol. 48:348–367.

    Google Scholar 

  44. Webster, G. R. 1973. Phospholipase A activities in normal and sectioned rat sciatic nerve. J. Neurochem. 21:873–876.

    Google Scholar 

  45. Wiggins, R. C., Benjiamins, J. A., andMorell, P. 1975. Appearance of myelin proteins in rat sciatic nerve during development. Brain Res. 89:99–106.

    Google Scholar 

  46. Wood, J. G., andDawson, R. M. S. 1974. Lipid and protein changes in sciatic nerve during Wallerian degeneration. J. Neurochem. 22:631–635.

    Google Scholar 

  47. Yao, J. K., Natarajan, V., andDyck, P. J. 1980. The sequential alterations of endoneurial cholesterol and fatty acid in Wallerian degeneration and regeneration. J. Neurochem. 35:933–940.

    Google Scholar 

  48. Yates, A. J., andWherrett, J. R. 1974. Changes in the sciatic nerve of the rabbit and its tissue constituents during development. J. Neurochem. 23:993–1003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberghina, M., Viola, M., Moschella, F. et al. Myelination of regenerating sciatic nerve of the rat: Lipid components and synthesis of myelin lipids. Neurochem Res 8, 133–150 (1983). https://doi.org/10.1007/BF00963914

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963914

Keywords

Navigation