Skip to main content

Advertisement

Log in

Recognition of heterogeneous lymphokine-activated killer (LAK) receptors on Kaposi's sarcoma cells, endothelial cells, and monocytes/macrophages: Evidence of distinct LAK-cell antigen on Kaposi's sarcoma cells—Potential for use of LAK cells for immunotherapy

  • Original Articles
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the potential use of lymphokine-activated killer (LAK) cells against Kaposi's sarcoma (KS) cells. We used chromium release cold-target inhibition assay for understanding the expression of heterogeneous LAK-cell antigens (Ags) on KS cells, endothelial cells (ECs), and monocytes/macrophages (Mø) which could allow for the utilization of LAK-cell immunotherapy in KS without side effects. Our data show that (i) all three cell types express the CD18 Ag of LFA-1 or Leu-CAM, (ii) rare KS cells from eyes cannot cold target-inhibit ECs, (iii) KS cells express a distinct LAK-cell Ag, which we have called LAK-KS Ag, and (iv) LAK-KS Ag allows for cold-target inhibition between different KS cells. The identification of LAK-KS Ag and a monoclonal antibody capable of inhibiting lysis of ECs and Mø without obstructing LAK-KS Ag would be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottlieb GJ, Ackerman AB (eds): Kaposi's Sarcoma: A Text and Atlas. Philadelphia: Lea & Febiger, 1988

    Google Scholar 

  2. Kaposi M: Idiopathisches multiples pigmentsarkom der haut Kaposi. Arch Dermatol Syph 4:265–273, 1872

    Google Scholar 

  3. Schwimmer EL: Sarcoma, idiopathische hautsarkom multiplex cutis (abstract). Monatschr Prakt Dermatol 9:90, 1899

    Google Scholar 

  4. Gilchrist TC, Ketron LW: Report of two cases of idiopathic hemorrhagic sarcoma (Kaposi), one presenting unusual features, with special methods of treatment and investigation. J Cutan Dis 34:429–440, 1916

    Google Scholar 

  5. Hashimoto H, Mueller H, Falk S, Stutte HJ: Histogenesis of Kaposi's sarcoma associated with AIDS: A histologic, immunohistochemical and enzyme histochemical study. Pathol Res Pract 182:658–668, 1987

    PubMed  Google Scholar 

  6. Beckstead JH, Wood GS, Fletcher V: Evidence for the origin of Kaposi's sarcoma from lymphatic endothelium. Am J Pathol 119:294–300, 1985

    PubMed  Google Scholar 

  7. Brooks JL: Hypothesis. Kaposi's sarcoma: A reversible hyperplasia. Lancet 2:1309–1311, 1986

    PubMed  Google Scholar 

  8. Guarda LG, Silva EG, Ordonez NG, Smith Jr. JL. Factor VIII in Kaposi's sarcoma. Am J Clin Pathol 76:197–200, 1981

    PubMed  Google Scholar 

  9. Modlin RL, Hofman FM, Kemf RA, Taylor CR, Conant MA: Kaposi's sarcoma in homosexual men: an immunohistochemical study. J Am Acad Dermatol 8:620–627, 1983

    PubMed  Google Scholar 

  10. Jones RR, Spaull J, Spry C, Jones EW: Histogenesis of Kaposi's sarcoma in patients with and without acquired immune deficiency syndrome (AIDS). J Clin Pathol 39:742–749, 1986

    PubMed  Google Scholar 

  11. Schulze HJ, Ruetten A, Mahrle G, Steigleder GK: Initial lesions of HIV-related Kaposi's sarcoma—a histological, immunohistochemical, and ultrastructural study. Arch Dermatol Res 279:499–503, 1987

    PubMed  Google Scholar 

  12. Leu HJ, Schneider J, Hardmeier T, Maurer R, Leuthy R, Burger R, Burger HR, Krause M: Kaposi's sarcoma and malignant lymphoma in AIDS. Virchows Arch 403:205–213, 1984

    Google Scholar 

  13. Walter P, Philippe E, Khalil T, Nguemby-Mbina C, Chambian A: Kaposi's sarcoma: A vascular neoplasm of presumably viral origin; histologic and ultrastructural characteristics. Ann Pathol 4:19–25, 1984

    PubMed  Google Scholar 

  14. Schenk P: Ultrastructural morphology of Kaposi's sarcoma of the head and neck in acquired immune deficiency syndrome (AIDS). Laryngol Rhinol Otol Stuttg 65:604–611, 1986

    PubMed  Google Scholar 

  15. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA: Lymphokine-activated killer cell phenomenon: Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841, 1982

    PubMed  Google Scholar 

  16. Yang JC, Rosenberg SA: Current approaches to the adoptive immunotherapy of cancer. Adv Exp Med Biol 233:459–567, 1988

    PubMed  Google Scholar 

  17. Grimm EA, Ramsey KM, Mazumder A, Wilson DJ, Djeu JY, Rosenberg SA: Lymphokine-activated killer cell phenomenon. II. Precursor phenotype is serologically distinct from peripheral T-lymphocytes, memory cytotoxic thymus-derived lymphocytes, and natural killer cells. J Exp Med 157:884–897, 1983

    PubMed  Google Scholar 

  18. Clark JW, Longo DL: Adoptive therapies: Quo vadis? Pathol Immunopathol Res 7:442–458, 1988

    PubMed  Google Scholar 

  19. Vercellotti GM, Kotasek D, Jocob HS: Excessive vulnerability of herpes-infected endothelium to lymphokine-activated lymphocytes: A possible role in lethal viral pneumonitis following bone marrow transplantation. Trans Assoc Am Phys 101:310–313, 1988

    PubMed  Google Scholar 

  20. Kotasek D, Vercellotti GM, Ochoa AC, Bach FH, White JG: Mechanism of cultured endothelial injury induced by lymphokine-activated killer cells. Cancer Res 48:5528–5532, 1988

    PubMed  Google Scholar 

  21. Streck RJ, Helinski EH, Ovak GM, Pauley JL: Lysis of autologous human macrophages by lymphokine-activated killer cells: Interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy. J Leukocyte Biol 48:237–246, 1990

    PubMed  Google Scholar 

  22. Zambello R, Trentin L, Feruglio C, Bulian P, Masciarelli M: Susceptibility of lysis of pulmonary alveolar macrophages by human lymphokine-activated killer cells. Cancer Res 50:1768–1773, 1990

    PubMed  Google Scholar 

  23. Mazumder A, Grimm EA, Rosenberg SA: Lysis of fresh human solid tumor cells by autologous lymphocytes activatedin vitro by allosensitization. Cancer Immunol Immunother 15:1–10, 1983

    PubMed  Google Scholar 

  24. Groscurth P: Cytotoxic effector cells of the immune system. Anat Embryol Berl 180:109–119, 1989

    PubMed  Google Scholar 

  25. Grant AJ, Hall RE, Merchant RE: Binding of an antilymphocyte function associated antigen one (LFA-1) monoclonal antibody (RH1-38) to lymphokine activated killer (LAK) cells inhibits cytolytic capacity. (Abstract). J Leukocyte Biol 40:298, 1986

    Google Scholar 

  26. Niedt GW, Schinella RA: Acquired immunodeficiency syndrome: A clinicopathologic study of 56 autopsies. Arch Pathol Lab Med 109:727–734, 1985

    PubMed  Google Scholar 

  27. Hui AN, Koss MN, Meyer PR: Necroscopy findings in acquired immunodeficiency syndrome: A comparison of premortem diagnoses with postmortem findings. Hum Pathol 15:670–676, 1984

    PubMed  Google Scholar 

  28. Kotasek D, Vercellotti GM, Ochoa AC, Bach FH, Jacob HS: Lymphokine activated killer (LAK) cell-mediated endothelial injury: A mechanism for capillary leak syndrome in patients treated with LAK cells and interleukin-2. Trans Assoc Am Phys 100:21–27, 1987

    PubMed  Google Scholar 

  29. Duke SS, King LS, Jones MR, Newman JH, Brigham KL: Human recombinant interleukin 2-activated sheep lymphocytes lyse sheep pulmonary microvascular endothelial cells. Cell Immunol 122:188–199, 1989

    PubMed  Google Scholar 

  30. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA: A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit: The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKMI/Mac-1) and the p150, 95 molecule. J Exp Med 158:1785–1803, 1983

    PubMed  Google Scholar 

  31. Blanchard DK, Hall RE, Djeu JY: Role of CD18 in lymphokine activated killer (LAK) cell-mediated lysis of human monocytes: Comparison with other LAK targets. Int J Cancer 45:312–319, 1990

    PubMed  Google Scholar 

  32. Patarroyo M, Prieto J, Rincon J, Timonen T, Lundberg C: Leukocyte-cell adhesion: A molecular process fundamental in leukocyte physiology. Immunol Rev 114:67–108, 1990

    PubMed  Google Scholar 

  33. Blanchard DK, Michelini-Norris MB, Freidman H, Djeu JY: Lysis of mycobacteria-infected monocytes by IL-2-activated killer cells: Role of LFA-1. Cell Immunol 119:402–411, 1989

    PubMed  Google Scholar 

  34. Zocchi MR, Faravelli A, Gianazza E, Pardi R, Rugarli C: LAK1: A novel leucocyte differentiation antigen shared by lymphoid and endothelial cells. Basic Appl Histochem 34:43–50, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.U., Mazumder, A. Recognition of heterogeneous lymphokine-activated killer (LAK) receptors on Kaposi's sarcoma cells, endothelial cells, and monocytes/macrophages: Evidence of distinct LAK-cell antigen on Kaposi's sarcoma cells—Potential for use of LAK cells for immunotherapy. J Clin Immunol 12, 281–288 (1992). https://doi.org/10.1007/BF00918152

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00918152

Key words

Navigation