Skip to main content
Log in

Effects of the Na+ antagonist cibenzoline on left ventricular function of postischemic hearts

  • Antiarrhythmics
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The negative inotropic effect of antiarrhythmic drugs is a major drawback in antiarrhythmic drug therapy, especially in patients with reduced contractile function of the left ventricle. The circulatory and myocardial effects of the new class I antiarrhythmic drug (a Na+ antagonist), cibenzoline (2 mg/kg i.v.), were investigated in 47 open-chest rats with normal and postischemic myocardium (3×4 minutes of global ischemia). Hemodynamic measurements in the intact circulation and isovolumic registrations (peak isovolumic left ventricular systolic pressure and peak isovolumic dP/dtmax) were compared to saline controls. In rats with postischemic myocardium, cibenzoline caused a significant (p<0.001) decrease in the cardiac output for 38%, in the dP/dtmax for 30%, and in the peak isovolumic dP/dtmax for 19% at the end of infusion (compared to the control). The heart rate was reduced by 22% (p<0.001), the mean aortic pressure by 22% (p<0.001), and the calculated systemic resistance by 20% (p<0.001). In contrast to the results with postischemic myocardium, no important changes in the hemodynamics were detectable after an identical dose in normal animals without left ventricular dysfunction. The results indicate that standard doses of the Na+ antagonist cibenzoline may induce significant cardiodepressant effects on postischemic left ventricles with reduced function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotler MN, Tabatznik B, Mower MM, Tominaga S. Prognostic significance of ventricular ectopic beats with respect to sudden death in the late postinfarction period.Circulation 1973;43:959–966.

    Google Scholar 

  2. Ruberman W, Weinblatt E, Goldberg JD, Frank CW, Chaudhary BS, Shapiro S. Ventricular premature complexes and sudden death after myocardial infarction.Circulation 1981;64:297–305.

    Google Scholar 

  3. Mukhaji J, Rude RE, Poole WK, et al. Risk factors for sudden death after acute myocardial infarction: Two-year follow-up.Am J Cardiol 1984;54:31–36.

    Google Scholar 

  4. Holmes J, Kubo SH, Cody RJ, Kligfield P. Arrhythmias in ischemic and nonischemic dilated cardiomyopathy: Prediction of mortality by ambulatory electrocardiography.Am J Cardiol 1985;55:146–151.

    Google Scholar 

  5. Learch AJ, Brown JE, Armstrong PW. Cardiac depression by intravenous disopyramide in patients with left ventricular dysfunction.Am J Med 1980;68:839–844.

    Google Scholar 

  6. Podrid PJ, Schoeneberger A, Lown B. Congestive heart failure caused by oral disopyramide.N Engl J Med 1980;302:614–617.

    Google Scholar 

  7. Desai JM, Scheinmann MM, Hirschfeld D, Gonzalez R, Peters RW. Cardiovascular collapse associated with disopyramide therapy.Chest 1981;79:545–551.

    Google Scholar 

  8. Seals AA, Haider R, Leon C, et al. Antiarrhythmic efficacy and hemodynamic effects of cibenzoline in patients with nonsustained ventricular tachycardia and left ventricular dysfunction.Circulation 1987;75:800–808.

    Google Scholar 

  9. Greene HL, Richardson DW, Hallstrom AP, et al. Congestive heart failure after acute myocardial infarction in patients receiving antiarrhythmic agents for ventricular premature complexes (cardiac arrhythmia pilot study).Am J Cardiol 1989;63:393–398.

    Google Scholar 

  10. Millar JS, Vaughan Williams EM. Effects on rabbit nodal, atrial, ventricular and Purkinje cell potential of a new antiarrhythmic drug, cibenzoline, which protects against potential shorting in hypoxia.Br J Pharmacol 1982;75:469–478.

    Google Scholar 

  11. Thébaut JF, Achard F, de Langenhagen B. Etude electrophysiologique chez l'homme d'un nouvel antiarythmique, la cibenzoline, dans le syndrome de Wolff-Parkinson-White.L'Information Cardiologique 1980;4:393–402.

    Google Scholar 

  12. Waleffe A, Dufour A, Aymard M-F, Kulbertus H. Electro-physiologic effects, antiarrhythmic activity and pharmacokinetics of cibenzoline studied with programmed stimulation of the heart in patients with supraventricular reentrant tachycardias.Eur Heart J 1985;6:253–260.

    Google Scholar 

  13. Baligadoo S, Chiche P. Beneficial effects of U.P. 339.01 a new antiarrhythmic agent against ventricular premature beats.Circulation 1978;57(Suppl 2):179.

    Google Scholar 

  14. Cocco G, Strozzi C, Pansini R, et al. Antiarrhythmic use of cibenzoline, a new class 1 antiarrhythmic agent with class 3 and 4 properties, in patients with recurrent ventricular tachycardia.Eur Heart J 1984;5:108–114.

    Google Scholar 

  15. Miura DS, Keren G, Torres V, Butler B, Aogaichi K, Somberg JC. Antiarrhythmic effects of cibenzoline.Am Heart J 1985;109:827–833.

    Google Scholar 

  16. Beyer ME, Hoffmeister HM, Seipel L. Hemodynamic effects of cibenzoline on normal myocardium and after pretreatment with DL-sotalol.J Cardiovasc Pharmacol 1992;19:657–664.

    Google Scholar 

  17. Rigaud M, Jouret G, Canal M, Bardet J, Flouvat B, Bourdarias J-P. Hemodynamic effects of a new antiarrhythmic agent: Cibenzoline.J Pharmacol (Paris) 1985;16:247–257.

    Google Scholar 

  18. Hoffmeister HM, Betz R, Fiechtner H, Seipel L. Myocardial and circulatory effects of inosine.Cardiovasc Res 1987;21:65–71.

    Google Scholar 

  19. Hoffmeister HM, Storf R, Thiedemann KU, Seipel L. High energy phosphates, myocardial contractile function and properties after short periods of oxygen deficiency.Basic Res Cardiol 1989;84:77–90.

    Google Scholar 

  20. Hoffmeister HM, Hörmann HP, Beyer M, Seipel L. Beeinträchtigung der linksventrikulären Funktion postischämischer Herzen durch Flecainid.Z Kardiol 1990;79:189–192.

    Google Scholar 

  21. Hoffmeister HM, Hörmann HP, Beyer M, Seipel L. Hämodynamische Wirkungen von Disopyramid auf postischämisches und normales Myokard.Klin Wochenschr 1990;68:1178–1182.

    Google Scholar 

  22. Hoffmeister HM, Müller S, Seipel L. Effects of the new class-III antiarrhythmic drug D-sotalol on contractile function of postischemic myocardium.J Cardiovasc Pharmacol 1991;17:581–586.

    Google Scholar 

  23. Kühlkamp V, Schmid F, Ress KM, et al. Quantification of cibenzoline and its imidazole metabolite by high-performance liquid chromatography in human serum.J Chromatogr 1990;528:267–273.

    Google Scholar 

  24. Humen DP, Lesoway R, Kostuk WJ. Acute, single intravenous doses of cibenzoline: An evaluation of safety, tolerance, and hemodynamic effects.Clin Pharmacol Ther 1987;41:537–545.

    Google Scholar 

  25. Mahler F, Ross JJ, O'Rourke RA, Covell JW. Effects of changes in preload, afterload, and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog.Am J Cardiol 1975;35:626–634.

    Google Scholar 

  26. Holck M, Osterrieder W. Inhibition of the myocardial Ca2+ inward current by the class-I antiarrhythmic agent, cibenzoline.Br J Pharmacol 1986;87:705–711.

    Google Scholar 

  27. van den Brand M, Serruys P, de Roon Y, Aymard MF, Dufour A. Haemodynamic effects of intravenous cibenzoline in patients with coronary heart disease.Eur J Clin Pharmacol 1984;26:297–302.

    Google Scholar 

  28. Touboul P, Atallah G, Kirkorian G, et al. Electrophysiologic effects of cibenzoline in humans related to dose and plasma concentration.Am Heart J 1986;112:333–339.

    Google Scholar 

  29. Heering H. Das Elektrokardiogramm der wachen und der narkotisierten Ratte.Arch Int Pharmacodyn 1970;185:308–328.

    Google Scholar 

  30. Lehr E, Haeser PE, Werner G. Die chonotrope Wirkung der Urethan-Narkose auf das Mäuseherz.Naunyn Schmiedebergs Arch Pharmacol 1972;273:386–393.

    Google Scholar 

  31. Doorley BM, Hutcheon DE, Dapson SC. The antifibrillatory effects of cibenzoline on Langendorff-perfused rabbit heart (abstr).Fed Proc Am Soc Exp Biol 1984;43:961.

    Google Scholar 

  32. Hoffmeister HM, Müller S, Seipel L. Increased sensitivity of failing myocardium to hemodynamic effects of antiarrhythmic drugs (abstr).Eur Heart J 1991;12(Suppl):222.

    Google Scholar 

  33. Honerjäger P. The contribution of Na channel block to the negative inotropic effect of antiarrhythmic drugs.Basic Res Cardiol 1986;81(Suppl 1):33–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmeister, H.M., Beyer, M.E. & Seipel, L. Effects of the Na+ antagonist cibenzoline on left ventricular function of postischemic hearts. Cardiovasc Drug Ther 9, 351–357 (1995). https://doi.org/10.1007/BF00878681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878681

Key Words

Navigation