Skip to main content
Log in

The fractal geometry of interfaces and the multifractal distribution of dissipation in fully turbulent flows

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

We describe scalar interfaces in turbulent flowsvia elementary notions from fractal geometry. It is shown by measurement that these interfaces possess a fractal dimension of 2.35±0.05 in a variety of flows, and it is demonstrated that the uniqueness of this number is a consequence of the physical principle of Reynolds number similarity. Also, the spatial distribution of scalar and energy dissipation in physical space is shown to be multifractal. We compare thef(α) curves obtained from one- and two-dimensional cuts in several flows, and examine their value in describing features of turbulence in the three-dimensional physical space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anselmet, F., Gagne, Y., Hopfinger, E.J., andAntonia, R. A. (1984),High-order Velocity Structure Functions in Turbulent Shear Flows, J. Fluid Mech.140, 63.

    Google Scholar 

  • Chhabra, A., Jensen, R., andSreenivasan, K. R. (1989)Multifractals, Multiplicative Processes and the Thermodynamic Formalism, Phys. Rev. A (in print).

  • Feigenbaum, M. (1987),Some Characterizations of Strange Sets, J. Stat. Phys.,46, 919.

    Google Scholar 

  • Frisch, U., andParisi, G.,On the singularity structure of fully developed turbulence, InTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (eds. Ghil, M., Benzi, R., and Parisi, G.) (North-Holland, New York 1985).

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., andSharaiman, B. I. (1986),Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev.A33, 1141.

    Google Scholar 

  • Hentschel, H. G. E., andProcaccia, I. (1983)The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Physica,8D, 435.

    Google Scholar 

  • Mandelbrot, B. B. (1974),Intermittent Turbulence in Self-similar Cascades: Divergence of High Moments and Dimension of the Carrier, J. Fluid Mech.62, 331.

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature (Freeman, San Francisco 1982).

    Google Scholar 

  • Mandlebrot, B. B.,An introduction to multifractal distribution functions, InFluctuations and Pattern Formation (eds. Stanley, H. E., and Ostrowsky, N.) (Kluwer, Dordrecht-Boston 1988); see also this volume.

    Google Scholar 

  • Marstrand, J. M. (1954),Some Fundamental Geometrical Properties of Plane Sets of Fractal Dimensions, London Math. Soc.,3, 257.

    Google Scholar 

  • Mattila, P. (1975),Hausdorff Dimension, Orthogonal Projections and Intersections with Planes, Ann. Acad. Sci. Fena. Ser. A I Math.1, 227.

    Google Scholar 

  • Meneveau, C. (1989),The Multifractal Nature of Turbulence, Ph.D. Thesis, Yale University.

  • Meneveau, C., andSreenivasan, K. R. (1987a),The Multifractal Dissipation Field in Turbulent Flows, Nuclear Physics B (Proc. Suppl.)2, 49.

    Google Scholar 

  • Meneveau, C., andSreenivasan, K. R. (1987b),Simple Multifractal Cascade Model for Fully Developed Turbulence, Phys. Rev. Lett.59, 1424.

    Google Scholar 

  • Meneveau, C., andSreenivasan, K. R. (1989),Measurement of f(α) from Scaling of Histograms, and Application to Dynamical Systems and Fully Developed Turbulence, Phys. Lett. A (in print).

  • Prasad, R. R., Meneveau, C., andSreenivasan, K. R. (1988),Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Turbulent Flows, Phys. Rev. Lett.61, 74.

    Google Scholar 

  • Prasad, R. R., andSreenivasan, K. R. (1989),Scalar Interfaces in Digital Images of Turbulent Flows, Experiments in Fluids7, 259.

    Google Scholar 

  • Ramshankar, R. (1988),The Dynamics of Countercurrent Mixing Layers, Ph.D. Thesis, Yale University.

  • Richardson, L. F.,Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, U. K. 1922).

    Google Scholar 

  • Sreenivasan, K. R., andMeneveau, C. (1986),The Fractal Facets of Turbulence, J. Fluid Mech.173, 357.

    Google Scholar 

  • Sreenivasan, K. R., andMeneveau, C. (1988),Singularties of the Equations of Fluid Motion, Phys. Rev.A38, 6287.

    Google Scholar 

  • Sreenivasan, K. R., Ramshankar, R., andMeneveau, C. (1989),Mixing, Entrainment, and Fractal Dimensiion of Interfaces in Turbulent Flows, Proc. Roy. Soc. Lond.A421, 79.

    Google Scholar 

  • Taylor, G. I. (1938),The Spectrum of Turbulence, Proc. Roy. Soc. Lond.A164, 476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenivasan, K.R., Prasad, R.R., meneveau, C. et al. The fractal geometry of interfaces and the multifractal distribution of dissipation in fully turbulent flows. PAGEOPH 131, 43–60 (1989). https://doi.org/10.1007/BF00874479

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874479

Key words

Navigation