Skip to main content
Log in

Molecular cloning and expression of the rat angiotensinogen gene

  • Proceedings of the Fourth International Workshop on Developmental Renal Physiology August 24–26, 1989 Montreal, Canada
  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

To identify tissue- and hormonal-specific DNA controlcis-elements in the rat gene, we have constructed fusion genes consisting of various lengths of the 5′-flanking region of the rat angiotensinogen gene linked to a human growth hormone (hGH) reporter gene and have introduced them into a subclone of rat pancreatic islet tumor cell line (1056A) which expresses the highest level of angiotensinogen mRNA. As a negative control, we have also introduced them into a human choriocarcinoma cell line (JEG-3), which does not express the endogenous angiotensinogen gene. The level of the expression of these fusion genes in these cells was determined by the level of immunoreactive hGH secreted into the culture medium. The expression of angiotensinogen-growth hormone (ANG-GH) fusion genes, pOGH (ANG N-1498/+18), pOGH (ANG N-688/+18), pOGH (ANG N-110/+18), pOGH (ANG N-53/+18), and pOGH (ANG N-35/+18) was 1.0, 1.8, 1.5, 12.0 and 3.0-fold higher, respectively, than the promoterless growth hormone expression vector (pOGH). The addition of dexamethasone (10−6 M), aldosterone (10−5 M), and thyroid hormone, L-T3 (10−7 M), stimulated the expression of pOGH (ANG N-1498/+18) by 4.0-, 2.5-, and 2.0-fold above the control level, respectively. Combination of dexamethasone (10−6 M), L-T3 (10−7 M), and ethinyl-estradiol (10−6 M) stimulated the expression of the pOGH (ANG N-1498/+18) to greater than 10-fold over the control. Ethinyl-estradiol (10−6 M) or progesterone (10−6 M) alone had no effect on the expression of the pOGH (ANG N-1498/+18). These studies demonstrate that the induction of expression of the angiotensinogen gene by dexamethasone and L-T3 in 1056A cells is due to a transcriptional mechanism and the 1056A cells could be useful for studying angiotensinogen gene regulation and for identifying the glucocorticoid and L-T3-responsivecis-regulatory elements in the angiotensinogen gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doolittle RF (1983) Angiotensinogen is related to the antitrypsin-antithrombin-ovalbumin family. Science 222: 417–419

    PubMed  Google Scholar 

  2. Re RN (1984) Cellular biology of the renin-angiotensin system. Arch Intern Med 144: 2037

    PubMed  Google Scholar 

  3. Harris PJ, Navar LG (1985) Tubular transport responses to angiotensin. Am J Physiol 248: F621-F630

    PubMed  Google Scholar 

  4. Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56: 1–56

    PubMed  Google Scholar 

  5. Blantz RC, Pelayo JC (1983) In vivo actions of angiotensin II on glomerular function. Fed Proc 42: 3071–3074

    PubMed  Google Scholar 

  6. Ichkawa I, Brenner BM (1984) Glomerular actions of angiotensin II. Am J Med 76: 43–79

    PubMed  Google Scholar 

  7. Harris PJ, Young JA (1977) Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in rat kidney. Pflügers Arch 367: 1295–1297

    Google Scholar 

  8. Ohkubo H, Makayama K, Tanaka T, Nakanishi S (1986) Tissue distribution of rat angiotensinogen mRNA and structural analysis of its heterogeneity. J Biol Chem 261: 319–323

    PubMed  Google Scholar 

  9. Kageyama R, Ohkubo H, Nakanishi S (1984) Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry 23: 3603–3609

    PubMed  Google Scholar 

  10. Tanaka T, Ohkubo H, Nakanishi S (1984) Common structural organization of the angiotensinogen and the α-1-antitrypsin genes. J Biol Chem 259: 8063–8065

    PubMed  Google Scholar 

  11. Blake C (1983) Exons-present from the beginning. Nature 271: 501

    Google Scholar 

  12. Campbell DJ, Habener JF (1986) Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78: 31–39

    PubMed  Google Scholar 

  13. Campbell DJ, Habener JF (1987) Cellular localization of ANG-N gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121: 1616–1626

    PubMed  Google Scholar 

  14. Ingelfinger J, Fon EA, Ellison KE, Dzau VJ (1987) Localization of the intrarenal renin angiotensin system (RAS) by in situ hybridization of renin and angiotensinogen (ANG-N) mRNA (abstract) Annual Meeting of the American Society for Nephrology, 13–16 December 1986. The American Society of Nephrology 122A, Dallas

  15. Philippe J, Chick WL, Habener JF (1987) Multipotential phenotypic expression of genes encoding peptide hormones in rat insulinoma cell lines. J Clin Invest 79: 351–358

    PubMed  Google Scholar 

  16. Brasier AR, Philippe J, Campbell DJ, Habener JF (1986) Novel expression of the angiotensinogen gene in a rat pancreatic islet cell line (transcriptional regulation by glucocorticoid). J Biol Chem 361: 16148–16154

    Google Scholar 

  17. Chan JSD, Robertson HA, Friesen HG (1978) Maternal and fetal concentrations of ovine placental lactogen measured by radioimmunoassay. Endocrinology 102: 1606

    PubMed  Google Scholar 

  18. Thorell JI, Johannson BG (1971) Enzymatic iodination of polypeptides with125I to high specific activity. Biochim Biophys Acta 251: 363

    PubMed  Google Scholar 

  19. Frischauf AM, Lehrach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827

    PubMed  Google Scholar 

  20. Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1245

    PubMed  Google Scholar 

  21. Maniatis T, Fritsch ER, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  22. Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100: 243–255

    PubMed  Google Scholar 

  23. Davis KLG, Dibner MD, Battey JF (eds) (1986) Basic methods in molecular biology. Elsevier, New York, pp 96

    Google Scholar 

  24. Sanger FI, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  25. Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous clonal insulin- and somatostatin-secreting cell lines established from a transplanted rat islet cell tumor. Proc Natl Acad Sci USA 77: 3519–3523

    PubMed  Google Scholar 

  26. Brasier AR, Tate JE, Ron D, Habener JF (1989) Multiple cis-acting DNA regulatory elements mediate hepatic angiotensinogen gene expression. Mol Endocrinol 3: 1022–1034

    PubMed  Google Scholar 

  27. Davis LG, Dibner MD, Battey JF (eds) (1986) Basic methods in molecular biology. Elsevier, New York, pp 286–289

    Google Scholar 

  28. Davis LG, Dibner MD, Battey JF (eds) (1986) Basic methods in molecular biology. Elsevier, New York, pp 290–292

    Google Scholar 

  29. Samuels HH, Stanley F, Shapiro LE (1979) Control of growth hormone synthesis in cultured GH cells by 3,5,3′-triiodo-L-thyronine and glucocorticoid agonists and antagonists: studies on the independent and synergistic regulation of the growth hormone response. Biochemistry 18: 715–721

    PubMed  Google Scholar 

  30. Selden RF, Howie KB, Rowe ME, Goodman HM, Moore DD (1986) Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol 6: 3173–3179

    PubMed  Google Scholar 

  31. Bouhnik J, Cassio D, Coezy E, Corvol P, Weiss MC (1983) Angiotensinogen production by rat hepatoma cells in culture and analysis of its regulation by techniques of somatic cell genetics. J Cell Biol 97: 549–555

    PubMed  Google Scholar 

  32. Chang E, Perlman AJ (1988) Angiotensinogen mRNA. Regulation by cell cycle and growth factors. J Biol Chem 263: 5480–5484

    PubMed  Google Scholar 

  33. Kunapuli S, Fuller GM, Kumar A (1987) Regulation of angiotensinogen gene expression in a human hepatoma cell line. Life Sci 41: 2397–2401

    PubMed  Google Scholar 

  34. Ben-Ari E, Garisson J-C (1988) Regulation of angiotensinogen mRNA accumulation in rat hepatocytes. Am J Physiol 255: E70-E79

    PubMed  Google Scholar 

  35. Kalinyak JE, Perlman AJ (1987) Tissue-specific regulation of angiotensinogen mRNA accumulation by dexamethasone. J Biol Chem 262: 460–464

    PubMed  Google Scholar 

  36. Chang E, Perlman AJ (1987) Multiple hormones regulate angiotensinogen messenger ribonucleic acid levels in a rat hepatoma cell line. Endocrinology 121: 513–519

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J.S.D., Chan, A.H.H., Jiang, Q. et al. Molecular cloning and expression of the rat angiotensinogen gene. Pediatr Nephrol 4, 429–435 (1990). https://doi.org/10.1007/BF00862531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00862531

Key words

Navigation