Skip to main content
Log in

Neuronal dependence of extracellular dopamine, acetylcholine, glutamate, aspartate and gamma-aminobutyric acid (GABA) measured simultaneously from rat neostriatum using in vivo microdialysis: reciprocal interactions

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways.

It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björklund A, Lindvall O (1984) Dopamine containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol. 2. Classical neurotransmitters in the CNS, part I. Elsevier, New York, pp 117–155

    Google Scholar 

  • Bolam JP, Powell JF, Wu JY, Smith AD (1985) J Comp Neurol 237: 1–20

    Google Scholar 

  • Bouyer JJ, Park DH, Joh TH, Pickel CVM (1984) Brain Res 302: 267–277

    Google Scholar 

  • Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE (1977) Brain Res 135: 315–323

    Google Scholar 

  • Burger PM, Mehl E, Cameron PL, Maycox PR, Baumert M, Lottspeich F, De Camilli P, Jahn R (1989) Neuron 3: 715–720

    Google Scholar 

  • Burgunder JM, Young WS (1990) J Comp Neurol 300: 26–46

    Google Scholar 

  • Carlsson M, Carlsson A (1990) TINS 13: 272–276

    Google Scholar 

  • Carter CJ, L'Heureux R, Scatton B (1988) J Neurochem 51: 462–468

    Google Scholar 

  • Chéramy AR, Romo R, Godeheu G, Glowinski J (1986) Neuroscience 19: 1067–1079

    Google Scholar 

  • Christensson-Nylander I, Herrera-Marschitz M, Staines W, Hökfelt T, Terenius L, Ungerstedt U, Cuello C, Oertel W, Goldstein M (1986) Exp Brain Res 64: 169–192

    Google Scholar 

  • Currie DN, Kelly JS (1981) J Exp Biol 95: 181–193

    Google Scholar 

  • Descarries L, Lemay B, Doucet G, Berger B (1987) Neuroscience 21: 807–824

    Google Scholar 

  • Di Chiara G (1990) TIPS 11: 116–121

    Google Scholar 

  • Drew KL, O'Connor WT, Kehr J, Ungerstedt J (1990) Eur J Pharmacol 187: 385–397

    Google Scholar 

  • Giorguieff MF, Kemel ML, Glowinski J (1977) Neurosci Lett 6: 73–77

    Google Scholar 

  • Girault JA, Barbeito L, Spampinato U, Gozlan H, Glowinski J, Besson MJ (1986) J Neurochem 47: 98–196

    Google Scholar 

  • Godukhin OV, Zharikova AD, Budantsev AY (1984) Neuroscience 12: 377–383

    Google Scholar 

  • Graybiel AM (1990) TINS 13: 244–254

    Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984a) Brain Res 323: 269–278

    Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984b) Eur J Pharmacol 102: 213–227

    Google Scholar 

  • Herrera-Marschitz M (1986) Neuropharmacology and functional anatomy of the basal ganglia. Thesis, Karolinska Institute, Stockholm, p 79

    Google Scholar 

  • Herrera-Marschitz M, Goiny M, Utsumi H, Ungerstedt U (1989) Neurosci Lett 97: 266–270

    Google Scholar 

  • Herrera-Marschitz M, Goiny M, Utsumi H, Ferre S, Guix T, Ungerstedt U (1990a) Regulation of cortical and striatal dopamine and acetylcholine release by glutamate mechanisms assayed in vivo with microdialysis: in situ stimulation with kainate-, quisqualate- and NMDA-receptor agonist. In: Lubec G, Rosenthal GA (eds) Amino acids. Chemistry, biology and medicine. ESCOM, Wien, pp 599–604

    Google Scholar 

  • Herrera-Marschitz M, Goiny M, Utsumi H, Ferre S, Håkansson L, Nordberg A, Ungerstedt U (1990b) Neurosci Lett 110: 172–179

    Google Scholar 

  • Herrera-Marschitz M, Utsumi H, Ungerstedt U (1990c) J Neurol Neurosurg Psychiatry 53: 39–43

    Google Scholar 

  • Herrera-Marschitz M (1991) Modulation of striatal dopamine and acetylcholine release by different glutamate receptors: studies with in vivo microdialysis. In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Advances in behavioral biology, vol 39. Plenum Press, New York, pp 357–362

    Google Scholar 

  • Herrling PL (1985) Neuroscience 14: 417–426

    Google Scholar 

  • Hornykiewicz O (1973) Br Med Bull 29: 172–178

    Google Scholar 

  • Hurd J (1989) In vivo brain pharmacology of cocaine, amphetamine and related drugs: a microdialysis study. Thesis, Karolinska Institute, Stockholm, p 68

    Google Scholar 

  • Hökfelt T, Mårtensson R, Björklund A, Kleinau S, Goldstein M (1984) Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2: Classical neurotransmitters in the CNS, part I. Elsevier, New York, pp 277–379

    Google Scholar 

  • Imperato A, Di Chiara G (1984) J Neurosci 4: 966–977

    Google Scholar 

  • Johnston GAR. Sue M. Kemmedy E, Twitchin B (1979) J Neurochem 32: 121–127

    Google Scholar 

  • Kehr J, Ungerstedt U (1988) J Neurochem 51: 1308–1310

    Google Scholar 

  • Kim JS, Bak IJ, Hassler R, Okada Y (1971) Exp Brain Res 14: 95–104

    Google Scholar 

  • Klawans HL, Goetz C, Westeimer R (1972) Dis Nerv Syst 33: 711–719

    Google Scholar 

  • Kubota Y, Inagaki S, Kito S, Wu JY (1987a) Brain Res 406: 147–156

    Google Scholar 

  • Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein TF, Tohyama M (1987b) Brain Res 413: 179–184

    Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Krieger, New York, p 162

    Google Scholar 

  • Lindefors N (1987) Brain tachykinins and their interaction with dopaminergic transmission. Thesis, Karolinska Institute, Stockholm, p 34

    Google Scholar 

  • Maysinger D, Herrera-Marschitz M, Carlsson A, Garofalo L, Cuello AC, Ungerstedt (1988) Brain Res 461: 355–360

    Google Scholar 

  • McGeer PL, McGeer EG (1975) Brain Res 91: 331–335

    Google Scholar 

  • McGeer EG, Staines WA, McGeer PL (1984) Can J Neurosci [Suppl]: 89–99

    Google Scholar 

  • McGeorge AJ, Faull RLM (1989) Neuroscience 29: 503–537

    Google Scholar 

  • Meana JJ, Herrera-Marschitz M, Brodin E, Hökfelt T, Ungerstedt U (1991) Amino Acids 1: 365–373

    Google Scholar 

  • Moghaddam B, Bunney BS (1989) J Neurochem 53: 652–654

    Google Scholar 

  • O'Connor WT, Lindefors N, Brene S, Herrera-Marschitz M, Persson H, Ungerstedt U (1991a) Neurosci Lett 128: 66–70

    Google Scholar 

  • O'Connor WT, Herrera-Marschitz M, Lindefors N, Osborne PG, Drew KL, Reid M, Ungerstedt U (1991b) Dopamine-GABA interactions in the neostriatum. In: Rollema H, Westerink B, Drijfhout WJ (eds) Monitoring molecules in neuroscience. RUG, Groningen, pp 993–995

    Google Scholar 

  • Osborne PG, O'Connor WT, Drew KL, Ungerstedt U (1990) J Neurosci Methods 34: 99–105

    Google Scholar 

  • Osborne PG, O'Connor WT, Ungerstedt U (1991a) J Neurochem 56: 452–456

    Google Scholar 

  • Osborne PG, O'Connor WT, Kehr J, Ungerstedt U (1991b) J Neurosci Methods 37: 93–102

    Google Scholar 

  • Paulsen RE, Fonnum F (1989) J Neurochem 52: 1823–1829

    Google Scholar 

  • Reid M, Herrera-Marschitz M, Hökfelt T, Terenius L, Ungerstedt U (1988) Eur J Pharmacol 147: 411–420

    Google Scholar 

  • Reid MS (1990) Neuropharmacological circuitry of the basal ganglia studied by microdialysis. Thesis, Karolinska Institute, Stockholm, p 69

    Google Scholar 

  • Reid M, Herrera-Marschitz M, Hökfelt T, Ohlin M, Valentino KI, Ungerstedt U (1990a) Neuroscience 36: 643–658

    Google Scholar 

  • Reid M, Hökfelt T, Herrera-Marschitz M, Håkansson R, Feng DM, Folkers K, Goldstein M, Ungerstedt U (1990b) Brain Res 532: 175–181

    Google Scholar 

  • Reid MS, Herrera-Marschitz M, Hökfelt T, Lindefors N, Persson H, Ungerstedt U (1990c) Exp Brain Res 82: 293–303

    Google Scholar 

  • Reid MS, O'Connor WT, Herrera-Marschitz M, Ungerstedt U (1990d) Brain Res 519: 225–260

    Google Scholar 

  • Reid MS, Herrera-Marschitz M, Kehr J, Ungerstedt U (1990e) Acta Physiol Scand 1440: 527–537

    Google Scholar 

  • Roberts PJ, McBean GJ, Sharif NA, Thomas ER (1982) Brain Res 235: 83–91

    Google Scholar 

  • Romo R, Chéramy A, Godeheu G, Glowinski J (1986a) Neuroscience 19: 1067–1079

    Google Scholar 

  • Romo R, Chéramy A, Godeheu G, Glowinski J (1986b) Neuroscience 19: 1099–2005

    Google Scholar 

  • Satoh K, Staines WA, Atmadja S, Fiberger HC (1983) Neuroscience 10: 1121–1136

    Google Scholar 

  • Schwarcz R, Coyle JT (1977) Brain Res 127: 235–249

    Google Scholar 

  • Schwarcz R, Creese I, Coyle JT, Snyder SH (1978) Nature 271: 766–768

    Google Scholar 

  • Schwarcz R, Hökfelt T, Fuxe K, Jonsson G, Goldstein M, Terenius L (1979) Exp Brain Res 37: 199–216

    Google Scholar 

  • Smith AD, Bolam JP (1990) TINS 13: 259–265

    Google Scholar 

  • Somogyi P, Bolam JP, Smith AD (1981) J Comp Neurol 195: 567–584

    Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FMS, Ottersen OP (1983) Nature 301: 515–520

    Google Scholar 

  • Ståhle L (1987) Pharmacological studies on behavioural changes induced by dopamine agonists in the rat: a multivariate approach. Thesis, Karolinska Institute, Stockholm, p 73

    Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Nature 348: 443–446

    Google Scholar 

  • Tossman U, Ungerstedt U (1986) Eur J Pharmacol 123: 295–298

    Google Scholar 

  • Tossman U (1986) Neurochemical studies of amino acids in the rat central nervous system. Thesis, Karolinska Institute, Stockholm, p 29

    Google Scholar 

  • Tsumoto T (1990) Neurosci Res 9: 79–102

    Google Scholar 

  • Ungerstedt U, Herrera-Marschitz M, Jungnelius U, Ståhle L, Tossman U, Zetterström T (1982) Dopamine synaptic mechanisms reflected in studies combining behavioral recordins and brain dialysis. In: Kohksaka M, Shomori T, Tsukada Y, Woodruff GN (eds) Advances in dopamine research. Advances in biosciences, vol 37. Pergamon Press, Oxford, pp 219–231

    Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial microdialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. J Wiley, Chicester, pp 81–105

    Google Scholar 

  • Westerink BHC, Damsma G, Rollema H, De Vries JB, Horn AS (1987) Life Sci 41: 1763–1776

    Google Scholar 

  • Westerink BHC, Hofsteede HM, Damsma G, De Vries JB (1988) Naunyn-Schmiedeberg's Arch Pharmacol 337: 373–378

    Google Scholar 

  • Young AM, Bradford HF (1986) J Neurochem 47: 1399–1404

    Google Scholar 

  • Zetterström T (1986) Pharmacological analysis of central dopaminergic neurotransmission using a novel in vivo brain perfusion method. Thesis, Karolinska Institute, Stockholm, p 45

    Google Scholar 

  • Zetterström T, Herrera-Marschitz M, Ungerstedt U (1986) Brain Res 376: 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Marschitz, M., Meana, J.J., O'Connor, W.T. et al. Neuronal dependence of extracellular dopamine, acetylcholine, glutamate, aspartate and gamma-aminobutyric acid (GABA) measured simultaneously from rat neostriatum using in vivo microdialysis: reciprocal interactions. Amino Acids 2, 157–179 (1992). https://doi.org/10.1007/BF00806086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806086

Keywords

Navigation