Skip to main content
Log in

Effect of succinate on mitochondrial lipid peroxidation. 2. The protective effect of succinate against functional and structural changes induced by lipid peroxidation

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The damaging effects of ADP/Fe/NADPH-induced lipid peroxidation were studied on the enzymes and membranes of rat liver mitochondria. Succinate, an inhibitor of mitochondrial lipid peroxidation, prevented or delayed most of the damage caused by the peroxidation on different mitochondrial structures and functions. There were marked abnormalities on the electrophoretic pattern of mitochondrial proteins during the course of lipid peroxidation. The disappearance of particular polypeptide bands and the accumulation of high-molecular-weight aggregates could be observed. Succinate was found to delay these effects. As a consequence of lipid peroxidation the succinate oxidase activity of mitochondria was decreased. The succinate dehydrogenase enzyme and the component(s) of the respiratory chain were inactivated. Succinate prevented the inactivation of succinate dehydrogenase but did not protect the other components of terminal oxidation chain. From the matrix enzymes the glutamate dehydrogenase retained its full activity but the NADP-linked isocitrate dehydrogenase was inactivated. The mitochondrial membranes became permeable to large protein molecules. Succinate prevented the inactivation of isocitrate dehydrogenase and delayed the release of protein molecules from mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernath, P., and Singer, T. P. (1962). InMethods in Enzymology (Colowick, S. P., and Kaplan, N. O., eds.), Vol. V, Academic Press, New York, pp. 597–614.

    Google Scholar 

  • Bindoli, A., Cavallini, L., and Jocelyn, P. (1982).Biochim. Biophys. Acta 681, 496–503.

    Google Scholar 

  • Buege, J. A., and Aust, S. D. (1978). InMethods in Enzymology (Flescher, S., and Packer, L., eds.), Vol. LII, Academic Press, New York, p. 306.

    Google Scholar 

  • Chio, K. S., and Tappel, A. L. (1969).Biochemistry 8, 2827–2832.

    Google Scholar 

  • Douglas, M., Finkelstein, D., and Butow, R. A. (1979). InMethods in Enzymology (Fleischer, S., and Packer, L., eds.), Vol. LVI, Academic Press, New York, pp. 58–66.

    Google Scholar 

  • D'Souza, S., and Srere, P. A. (1983).Biochim. Biophys. acta 724, 40–51.

    Google Scholar 

  • Estabrook, R. W. (1966). InMethods in Enzymology (Estabrook, R. W., and Pullman, M. E., eds.), Vol. X, Academic Press, New York, pp. 41–47.

    Google Scholar 

  • Forman, H. J., and Boveris, A. (1982). InFree Radicals in Biology (Pryor, W. A., ed.), Vol. V, Academic Press, New York, pp. 65–90.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and David, M. M. (1949).J. Biol. Chem. 177, 751–766.

    Google Scholar 

  • Green, R. C., Little, C., and Brien, P. J. O. (1971).Arch. Biochem. Biophys. 142, 598–605.

    Google Scholar 

  • Harman, D. (1982). InFree Radicals in Biology (Pryor, W. A., ed.), Vol. V, Academic Press, New York, pp. 255–280.

    Google Scholar 

  • Hunter, F. E., Gebicki, J. R. M., Hoffstein, P. E., Weinstein, J., and Scott, A. (1963).J. Biol. Chem. 227, 653–668.

    Google Scholar 

  • Kunimoto, M., Inoue, K., and Nojima, S. (1981).Biochim. Biophys. Acta 646, 169–178.

    Google Scholar 

  • McKnight, R. C., and Hunter, F. E., Jr. (1966).J. Biol. Chem. 241, 2757–2765.

    Google Scholar 

  • Mészáros, L., Tihanyi, K., and Horváth, I. (1982).Biochim. Biophys. Acta 713, 675–677.

    Google Scholar 

  • Narabayashi, H., Takeshige, K., and Minakami, S. (1982).Biochem. J. 202, 97–105.

    Google Scholar 

  • Nohl, H., and Hegner, D. (1978).Eur. J. Biochem. 82, 563–567.

    Google Scholar 

  • Pfeifer, P. M., and McCay, P. B. (1972).J. Biol. Chem. 247, 6763–6769.

    Google Scholar 

  • Plaa, G. L., and Witschi, H. (1976).Annu. Rev. Pharmacol. 16, 125–141.

    Google Scholar 

  • Plaut, G. W. E. (1962). InMethods in Enzymology (Colowick, S. P., and Kaplan, N. O., eds.), Vol. V, Academic Press, New York, pp. 645–651.

    Google Scholar 

  • Rónai, É., Mészáros, L., Benkö, Gy, and Horváth, I. (1984).Experimentia 40, 1375–1377.

    Google Scholar 

  • Schmidt, E. (1974). InMethoden der Enzymatischen Analyse (Bergmeyer, H. U., ed.), Verlag Chemie, Weinheim, pp. 689–696.

    Google Scholar 

  • Schneider, A. K., Smith, E. E., and Hunter, F. E. (1964).Biochemistry 3, 1470–1477.

    Google Scholar 

  • Sevanian, A., and Hochstein, P. (1985).Annu. Rev. Nutr. 5, 365–390.

    Google Scholar 

  • Sies, H., and Cadenas, E. (1983). InBiological Basis of Detoxication, Academic Press, New York, pp. 181–211.

    Google Scholar 

  • Szabados, Gy., Ádám-Vizi, V., Hegyi, K., and Horváth, I. (1979).Acta Biochim. Biophys. Acad. Sci. Hung. 14, 155–161.

    Google Scholar 

  • Takeshige, K., and Minakami, S. (1975).J. Biochem. 77, 1067–1073.

    Google Scholar 

  • Tappel, A. L., and Zalkin, H. (1959).Arch. Biochem. Biophys. 80, 326–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretter, L., Szabados, G., Andó, A. et al. Effect of succinate on mitochondrial lipid peroxidation. 2. The protective effect of succinate against functional and structural changes induced by lipid peroxidation. J Bioenerg Biomembr 19, 31–44 (1987). https://doi.org/10.1007/BF00769730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769730

Key Words

Navigation