Skip to main content
Log in

Rapid analysis of glycolipid anchors in amphiphilic dimers of acetylcholinesterases

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    We describe two simple procedures for the rapid identification of certain structural features of glycolipid anchors in acetylcholinesterases (AChEs).

  2. 2.

    Treatment with alkaline hydroxylamine (that cleaves ester-linked acyl chains but not ether-linked alkyl chains) converts molecules possessing adiacylglycerol, but not those with analkylacylglycerol, into hydrophilic derivatives. AChEs in human and bovine erythrocytes possess an alkylacylglycerol (Robertset al., J. Biol. Chem. 263:18766–18775, 1988;Biochem. Biophys. Res. Commun. 150:271–277, 1988) and are not converted to hydrophilic dimers by alkaline hydroxylamine. Amphiphilic dimers of AChE fromDrosophila, from mouse erythrocytes, and from the human erythroleukaemia cell line K562 also resist the treatment with hydroxylamine and likely possess a terminal alkylacylglycerol. This indicates that the cellular pool of free glycolipids used as precursors of protein anchors is distinct from the pool of membrane phosphatidylinositols (which contain diacylglycerols).

  3. 3.

    Pretreatment with alkaline hydroxylamine is required to render the amphiphilic AChE from human erythrocytes susceptible to digestion byBacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC) (Toutantet al., Eur. J. Biochem. 180:503–508, 1989). We show here that this is also the case for the AChE from mouse erythrocytes, which therefore likely possesses an additional acyl chain in the anchor that prevents the action of PI-PLC.

  4. 4.

    In two sublines of K562 cells (48 and 243), we observed that AChE either was directly susceptible to PI-PLC (243) or required a prior deacylation by alkaline hydroxylamine (48). This suggests that glycolipid anchors in AChE of K562-48 cells, but not those in AChE of K562-243 cells, contain the additional acylation demonstrated in AChE from human erythrocytes. These observations illustrate the cell specificity (and the lack of species-specificity) of the structure of glycolipid anchors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arpagaus, M., and Toutant, J. P. (1985). Polymorphism of acetylcholinesterase in adultPieris brassicae heads. Evidence for detergent-insensitive and Triton X100-interacting forms.Neurochem. Int. 7793–804.

    Google Scholar 

  • Barbet, J., and Pierres, M. (1987). Thy-1 solubilization from mouse T cells by phosphatidylinositolspecific phospholipase C: Biochemical and antigenic characterization.Ann. Inst. Pasteur/Immunol. 138531–547.

    Google Scholar 

  • Bon, S., Toutant, J. P., Méflah, K., and Massoulié, J. (1988). Amphiphilic and non-amphiphilic forms ofTorpedo cholinesterases. II. Electrophoretic variants, phosphatidylinositolphospholipase C sensitive and insensitive forms.J. Neurochem. 51 786–794.

    Google Scholar 

  • Davitz, M. A., Low, M. G., and Nussenzweig, V. (1986). Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein.J. Exp. Med. 1631150–1161.

    Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 788–95.

    Google Scholar 

  • Espinoza, B., Tarrab-Hazdai, R., Silman, I., and Arnon, R. (1988). Acetylcholinesterase inSchistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol.Mol. Biochem. Parasitol. 29171–179.

    Google Scholar 

  • Ferguson, M. A. J., Homans, S. W., Dwek, R. A., and Rademacher, T. W. (1988). Glycosylphosphatidylinositol moiety that anchorsTrypanosoma brucei variant surface glycoprotein to the membrane.Science 239753–759.

    Google Scholar 

  • Fournier, D., Bergé, J. B., Cardoso de Almeida, M. L., and Bordier, C. (1988). Acetylcholinesterase fromMusca domestica andDrosophila melanogaster are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase.J. Neurochem. 501158–1163.

    Google Scholar 

  • Futerman, A. H., Low, M. G., and Silman, I. (1983). A hydrophobic dimer of acetylcholinesterase fromTorpedo californica electric organ is solubilized by phosphatidylinositol-specific phospholipase C.Neurosci. Lett. 4085–89.

    Google Scholar 

  • Futerman, A. H., Low, A. G., Michelson, D. M., and Silman, I. (1985). Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C.J. Neurochem. 451487–1494.

    Google Scholar 

  • Futerman, A. H., Raviv, D., Michaelson, D. M., and Silman, I. (1987). Differential susceptibility to phosphatidylinositol-specific phospholipase C of acetylcholinesterase in excitable tissues of embryonic and adultTorpedo ocellata.Mol. Brain Res. 2105–112.

    Google Scholar 

  • Garcia, L., Verdière-Sahuqué, M., Dreyfus, P., Nicolet, M., and Rieger, F. (1988). A dimeric form of acetylcholinesterase anchored through a glycolipid in mouse skeletal muscle.Neurochem. Int. 13327–332.

    Google Scholar 

  • Haas, R., Brandt, P. T., Knight, J., and Rosenberry, T. L. (1986). Identification of amine components in a glycolipid membrane-binding domain at the C-terminus of human erythrocyte acetylcholinesterase.Biochemistry 253098–3105.

    Google Scholar 

  • Haas, R., Marshall, T. L., and Rosenberry, T. L. (1988).Drosophila acetylcholinesterase: Demonstration of a glycoinositol phospholipid anchor and an endogenous proteolytic cleavage.Biochemistry 276453–6457.

    Google Scholar 

  • He, H. T., Barbet, J., Chaix, J. C., and Goridis, C. (1986). Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule.EMBO J. 52489–2494.

    Google Scholar 

  • Helenius, A., and Simons, K. (1977). Charge shift electrophoresis: Simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution.Proc. Natl. Acad. Sci. USA 74529–532.

    Google Scholar 

  • Low, M. G. (1989). Glycosyl-phosphatidylinositol: A versatile anchor for cell surface proteins.FASEB J. 31600–1608.

    Google Scholar 

  • Low, M. G., and Finean, J. B. (1977). Non-lytic release of acetylcholinesterase from erythrocytes by a phosphatidylinositol-specific phospholipase C.FEBS Lett. 82143–146.

    Google Scholar 

  • Low, M. G., Stiernberg, J., Waneck, G. L., Flaveil, R. A., and Kincade, P. W. (1988). Cell-specific heterogeneity in sensitivity of phosphatidylinositol-anchored membrane antigens to release by phospholipase C.J. Immunol. Meth. 113101–111.

    Google Scholar 

  • Massoulié, J., and Toutant, J.-P. (1988). Vertebrate cholinesterases: Structure and type of interaction.Handbook Exp. Pharmacol. 86167–224.

    Google Scholar 

  • Medof, M. E., Walter, E. I., Roberts, W. L., Haas, R., and Rosenberry, T. L. (1986). Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid.Biochemistry 256740–6747.

    Google Scholar 

  • Roberts, W. L., Kim, B. H., and Rosenberry, T. L. (1987). Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases.Proc. Natl. Acad. Sci. USA 847817–7821.

    Google Scholar 

  • Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988a). Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C.J. Biol. Chem. 26318766–18775.

    Google Scholar 

  • Roberts, W. L., Santikrn, S., Reinhold, V. R., and Rosenberry, T. L. (1988b). Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometryJ. Biol. Chem. 26318776–18784.

    Google Scholar 

  • Roberts, W. L., Myher, J. J., Kuksis, A., and Rosenberry, T. L. (1988c). Alkylacylglycerol molecular species in the glycoinositol phospholipid membrane anchor of bovine erythrocyte acetylcholinesterase.Biochem. Biophys. Res. Commun. 150271–277.

    Google Scholar 

  • Rosenberry, T. L., and Scoggin, D. M. (1984). Structure of human erythrocyte acetylcholinesterase. Characterization of intersubunit disulfide bonding and detergent interaction.J. Biol. Chem. 2595643–5652.

    Google Scholar 

  • Rosenberry, T. L., Toutant, J. P., Haas, R., and Roberts, W. L. (1989). Identification of glycoinositol phospholipid anchors of membrane proteins.Meth. Cell Biol. 32231–255.

    Google Scholar 

  • Sadoul, K., Meyer, A., Low, M. G., and Schachner, M. (1986). Release of the 120 kDa component of the mouse neural cell adhesion molecule N-CAM from cell surfaces by phosphatidylinositolspecific phospholipase C.Neurosci. Lett. 72341–346.

    Google Scholar 

  • Selvaraj, P., Rosse, W. F., Silber, R., and Springer, T. A. (1988). The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria.Nature 333565–567.

    Google Scholar 

  • Silman, I., and Futerman, A. H. (1987). Modes of attachment of acetylcholinesterase to the surface membrane.Eur. J. Biochem. 17011–22.

    Google Scholar 

  • Simmons, D., and Seed, B. (1988). The Fc receptor of natural killer cells is a phospholipid-linked membrane protein.Nature 333568–570.

    Google Scholar 

  • Stieger, A., Cardoso de Almeida, M. L., Blatter, M. C., Brodbeck, U., and Bordier, C. (1986). The membrane-anchoring systems of vertebrate acetylcholinesterase and variant surface glycoproteins of African trypanosomes share a common antigenic determinantFEBS Lett. 199182–186.

    Google Scholar 

  • Taguchi, R., Asahi, Y., and Ikezawa, H. (1980). Purification and properties of phosphatidylinositolspecific phospholipase C ofBacillus thuringiensis.Biochim. Biophys. Acta 61948–57.

    Google Scholar 

  • Taguchi, R., Suzuki, K., Nakabayashi, T., and Ikezawa, H. (1984). Acetylcholinesterase release from mammalian erythrocytes by phosphatidylinositol-specific phospholipase C ofBacillus thuringiensis and characterization of the released enzyme.J. Biochem. 96437–446.

    Google Scholar 

  • Toutant, J. P. (1989). Insect acetylcholinesterase: Catalytic properties, tissue distribution and molecular forms.Prog. Neurobiol. 32423–446.

    Google Scholar 

  • Toutant, J. P., Arpagaus, M., and Fournier, D. (1988). Native molecular forms of head acetylcholinesterase from adultDrosophila melanogaster. Quaternary structure and hydrophobic character.J. Neurochem. 50209–218.

    Google Scholar 

  • Toutant, J. P., Roberts, W. L., Murray, N. R., and Rosenberry, T. L. (1989). Conversion of human erythrocyte acetylcholinesterase from an amphiphilic to a hydrophilic form by phosphatidylinositol-specific phospholipase C and serum phospholipase D.Eur. J. Biochem. 180503–508.

    Google Scholar 

  • Toutant, J. P., Richards, M. K., Krall, J. A., and Rosenberry, T. L. (1990). Molecular forms of acetylcholinesterase in two sublines of human K562 cells. Sensitivity of resistance to phosphatidylinositol-specific phospholipase C and biosynthesis.Eur. J. Biochem. 18731–38.

    Google Scholar 

  • Villeval, J. L., Pelicci, P. G., Tabilio, A., Titeux, M., Henri, A., Houesche, F., Thomopoulos, P., Vainchenker, W., Garbaz, M., Rochant, H., Breton-Gorius, J., Edwards, P. A. W., and Testa, U. (1983). Erythroid differentiation of K562 cells. Effect of hemin, butyrate and TPA induction.Exp. Cell Res. 146428–435.

    Google Scholar 

  • Walter, E. I., Toutant, J. P., Rosenberry, T. L., Tykocinski, M. L., and Medof, M. E. (1988). Regulation of the susceptibility of decay accelerating factor's anchor to phosphatidylinositolspecific phospholipase C enzymatic cleavage. Abstracts Parasitology Meeting, NIH, Bethesda, Md.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toutant, JP., Krall, J.A., Richards, M.K. et al. Rapid analysis of glycolipid anchors in amphiphilic dimers of acetylcholinesterases. Cell Mol Neurobiol 11, 219–230 (1991). https://doi.org/10.1007/BF00712811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712811

Key words

Navigation