Skip to main content
Log in

Promoter of the canine tracheobronchial mucin gene

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The mucin gene is up-regulated in diseases such as cystic fibrosis (CF) and asthma. To understand the mechanisms involved in transcriptional regulation of mucin gene expression we have characterized the region of the mucin gene up-stream of the transcriptional start site and analysed thecis-acting elements required for mucin promoter activity. We isolated clones from a dog genomic library containing the promoter region for the tracheobronchial mucin gene (TBM). The authenticity of the promoter was tested by nucleotide sequencing, primer extension analysis, electrophoretic mobility shift assay (EMSA) and reporter gene expression analysis. The canineTBM promoter is different from housekeeping gene promoters (as it is not rich in GC content and contains TATA- and CAAT-like sequences) and different from that of regulatory genes (because it contains many TATA- and CAAT-like sequences and multiple transcriptional initiation sites). Reporter gene analysis using canineTBM promoter-chloramphenicol acetyltransferase (CAT) fusion plasmids established the regions responsible for promoter activity and verified the positions of the major mucin transcriptional initiation sites. Reporter gene analysis also established that a region of the canineTBM promoter and first exon containing all of the transcriptional initiation sites is more active in mucin expressing cells (e.g. CT1 cells-immortalized canine tracheal epithelial cells, human CFT1 cells-immortalized tracheal epithelial cells from a CF subject, or HBE1 cells-immortalized tracheal epithelial cells from non-CF subject) than in mucin non-expressing cells (COS7, 3T3), suggesting cell specificity. The promoter region contained cAMP response element (CRE) sequences, and theTBM gene transcription was enhanced when cAMP analogs were added to transfected cells. EMSA indicated the presence of at least two DNA binding proteins in CT1 cells. This is the first report describing the characterization of aTBM gene promoter. The information obtained in the present studies will be valuable in understanding mucin gene regulation in normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CF:

cystic fibrosis

CRE:

cAMP response element

CREB:

cAMP response element binding protein

CT:

cholera toxin

CTM:

canine tracheal mucin

EGF:

epidermal growth factor

EMSA:

electrophoretic mobility shift assay

GRE:

glucocorticoid response element

INS:

insulin

PBS:

phosphate buffered saline

RA:

retinoic acid

RT-PCR:

reverse transcriptase polymerase chain reaction

TF:

transferrin

TRE:

thyroid response element

VDRE:

vitamin D response element

References

  1. Chambers JA, Harris A (1993)J Cell Sc 105: 417–22.

    Google Scholar 

  2. Collins FS (1992)Science 256: 774–79.

    Google Scholar 

  3. Robinson CB, Martin WR, Ratcliff JL, Holland PV, Wu R, Cross CF (1993)Am Rev Resp Dis 148: 385–89.

    Google Scholar 

  4. Feldhoff PA, Bhavanandan VP, Davidson EA (1979)Biochemistry 18: 2430–36.

    Google Scholar 

  5. Ringler NJ, Selvakumar R, Woodward HD, Simet IM, Bhavanandan VP, Davidson EA (1987)Biochemistry 26: 5322–28.

    Google Scholar 

  6. Ringler NJ, Selvakumar R, Woodward, HD, Bhavanandan VP, Davidson EA (1988)Biochemistry 27: 8056–63.

    Google Scholar 

  7. Verma M, Davidson EA (1993)Proc Natl Acad Sc USA 90: 7144–48.

    Google Scholar 

  8. Verma M, Davidson EA (1994)Glycoconj J 11: 172–79.

    Google Scholar 

  9. Verma M, Madhu M, Marrota C, Lakshmi CV, Davidson EA (1993)Cancer Biochem Biophys 14: 41–51.

    Google Scholar 

  10. Verma M, Sanadai A, Davidson EA (1994)Glycobiology 4: 825–36.

    Google Scholar 

  11. Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J (1993)J Biol Chem 268: 9917–26.

    Google Scholar 

  12. Gum JR, Hicks JW, Toribara NW, Siddiki B, Kim Y (1994)J Biol Chem 269: 2440–46.

    Google Scholar 

  13. Shirotani K, Taylor-Papadimitriou J, Gendler S, Irimura T (1994)J Biol Chem 269: 15030–35.

    Google Scholar 

  14. Yankaskas JR, Cotton CU, Knowles MR, Gatzy JT, Boucher RC (1985)Am Rev Resp Dis 132: 1281–87.

    Google Scholar 

  15. Verma M, Davidson EA (1994)Cancer Biochem Biophys 14: 123–31.

    Google Scholar 

  16. Hames BD, Higgins SJ (1993) (eds)Gene Transcription: A Practical Approach. New York: IRL press.

    Google Scholar 

  17. Koh J, Sferra TJ, Collins FS (1993)J Biol Chem 268: 15912–21.

    Google Scholar 

  18. Virmani AK, Naziruddin B, Desai VC, Lowry JP, Graves DC, Sachdev GP (1992)In Vitro Cell Dev Biol 28A: 120–27.

    Google Scholar 

  19. Freshney RI (1992) (ed.)Culture of Epithelial Cells. pp. 25–223. New York: Wiley-Liss, Inc.

    Google Scholar 

  20. Sambrook J, Fritisch E, Maniatis T (1989)Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Press, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  21. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Siedman JG, Struhl K (1987)Current Protocols in Molecular Biology. New York: John Wiley and Sons.

    Google Scholar 

  22. Murray EJ (1993) (ed.)Gene Transfer and Expression Protocols pp. 17–330. Clifton, NJ: Humana Press.

    Google Scholar 

  23. Parker CS, Topol J (1984)Cell 36: 357–66.

    Google Scholar 

  24. Verma M, Kurl RN (1993)Biochem Molec Biol Int 30: 293–303.

    Google Scholar 

  25. Jones KA, Kadonaga JT, Rosenfeld PJ, Kelley TJ, Tjian R (1987)Cell 48: 79–89.

    Google Scholar 

  26. Killen PD, Burbelo P, Martin GR, Yamada Y (1988)J Biol Chem 263: 12310–14.

    Google Scholar 

  27. Burbelo PD, Bruggeman LA, Gabriel GC, Klotman PE, Yamada Y (1991)J Biol Chem 266: 22297–302.

    Google Scholar 

  28. De-Luca LM (1991)FASEB J 5: 2924–30.

    Google Scholar 

  29. Kozak M (1986)Proc Natl Acad Sci USA 83: 2850–54.

    Google Scholar 

  30. Kozak M (1991)J Biol Chem 266: 19867–70.

    Google Scholar 

  31. Jbilo O, Toutant J, Vatsis KP, Chatonnet A, Lockridge O (1994)J Biol Chem 269: 20829–37.

    Google Scholar 

  32. Lalli E, Sassone-Corsi P (1994)J Biol Chem 269: 17359–62.

    Google Scholar 

  33. Alberts AS, Montminy M, Shenolikar S, Feramisco JR (1994)Mol Cell Biol 14: 4398–407.

    Google Scholar 

  34. Borsook D, Konradi C, Falkowski O, Comb M, Hynam SEH (1994)Mol Endocrinol 8: 240–48.

    Google Scholar 

  35. Jany B, Gallup M, Tsuda T, Basbaum C (1991)Biochem Biophys Res Commun 181: 1–8.

    Google Scholar 

  36. Young MF, Findlay DM, Dominguez P, Burbelo P, McQuillan C, Kopp JB, Robey PG, Termine JD (1989)J Biol Chem 264: 450–56.

    Google Scholar 

  37. Bailey JM, Verma M (1991)Analyt Biochem 196: 11–18.

    Google Scholar 

  38. Zuker M, Stiegler P (1981)Nucleic Acids Res 9: 133–48.

    Google Scholar 

  39. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986)Proc Natl Acad Sci USA 83: 9373–77.

    Google Scholar 

  40. Verma M, Olnes MJ, Kurl RN, Davidson EA (1995)Gene 154: 255–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Accession number: L40433.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M., Murthy, V.V.S., Mathew, S. et al. Promoter of the canine tracheobronchial mucin gene. Glycoconjugate J 13, 797–807 (1996). https://doi.org/10.1007/BF00702344

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702344

Keywords

Navigation