Skip to main content
Log in

Effekt von Zinkionen auf Struktur und Verteilung der Neurotubuli

Effect of zinc ions on structure and distribution of neurotubules

  • Originalarbeiten
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Being interested in factors stabilizing neurotubules (NTs)in situ, we decided to immerse short segments of fresh rat peripheral nerves in buffered solutions containing ZnCl2 in final concentrations up to 10−2m prior to fixation with buffered osmium or glutaraldehyde, both containing ZnCl2. Zinc treatment resulted in a remarkable structural preservation of NTs after fixation with osmium, though they are not preserved by osmium fixation alone. Cross sections of myelinated nerve fibres show NTs arranged predominantly in compact groups. Within the groups NTs are surrounded or embedded in an electron dense fine granular material. The occurrence of incomplete C-shaped NTs and NT-like densities can be seen. NTs exhibit relatively constant distances and sometimes geometric patterns of arrangement. A lot of intertubule cross bridges and NTs with arms could be observed. In longitidinal section the bridge and arm spacing is seen to be periodic along the tubule axis at about 500 Å. Zinc treatment of nerves fixed in glutaraldehyde resulted in the same ultrastructural alterations described above. The resistance of zinc-stabilized NTs to degradation by osmium and the ultrastructural changes induced by zinc are discussed. The results suggest that in the presence of zinc ions osmium-labile NTs are transformed — by disassembly and reassembly — to osmium-stabile microtubules that are not identical with preexisting ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Andres, K. H.: Zur Methodik der Perfusionsfixierung des Zentralnervensystems von Säugern. Tagg. der Niederländ. u. Dtsch. Elektronenmikroskopischen Gesellschaften, Aachen 1965

  • Bardele, C. F.: Struktur, Biochemie und Funktion der Mikrotubuli. Cytobiologie7, 442–488 (1973)

    Google Scholar 

  • Behnke, O.: Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J. Cell Biol.34, 697–701 (1967)

    Google Scholar 

  • Behnke, O.: A comparative study of microtubules of disk-shaped blood cells. J. Ultrastruct. Res.31, 61–75 (1970)

    Google Scholar 

  • Borisy, G. G., Olmsted, J. B.: Nucleated assembly of microtubules in porcine brain extracts. Science177, 1196–1197 (1972)

    Google Scholar 

  • Burns, R. G., Starling, D.: The in vitro assembly of tubulins from sea-urchin eggs and rat brain: use of heterologous seeds. J. Cell Sci.14, 411–419 (1974)

    Google Scholar 

  • Byers, M. R., Hendrickson, A. E., Fink, B. R., Kennedy, R. D., Middaugh, M. E.: Effects of lidocaine on axonal morphology, microtubules and rapid transport in rabbit vagus nerve in vitro. J. Neurobiol.4, 125–143 (1973)

    Google Scholar 

  • Cohen, W. C., Gottlieb, T.: C-microtubules in isolated mitotic spindles. J. Cell Sci.9, 603–619 (1971)

    Google Scholar 

  • Chasey, D.: Observations on the central pair of microtubules from the cilia ofTetrahymena pyriformis. J. Cell Sci.5, 453–458 (1969)

    Google Scholar 

  • Chasey, D.: Further observations on the ultrastructure of cilia fromTetrahymena pyriformis. Exp. Cell Res.74, 471–579 (1972)

    Google Scholar 

  • Fink, B. R., Byers, M. R., Middaugh, M. E.: Dynamics of colchicine effects on rapid axonal transport and axonal morphology. Brain Res.56, 299–311 (1973)

    Google Scholar 

  • Friede, R. L., Samorajski, T.: Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec.167, 379–388 (1970)

    Google Scholar 

  • Gaskin, F., Kramer, S. B., Cantor, C. R., Adelstein, R., Shelanski, M. L.: A dynein-like protein associated with neurotubules. FEBS Letters40, 281–286 (1974)

    Google Scholar 

  • Grim, J. N.: Ultrastructure of ciliary microtubules after critical point drying. J. Cell Biol.45, 466–469 (1970)

    Google Scholar 

  • Grimstone, A. V., Cleveland, L. R.: The fine structure of the contractile axostyles of certain flagellates. J. Cell Biol.24, 387–400 (1965)

    Google Scholar 

  • Handel, M. A., Roth, L. E.: Cell shape and morphology of the neural tube: implications for microtubule function. Develop. Biol.25, 78–95 (1971)

    Google Scholar 

  • Hauser, M.: Die Wirkung von Mg++-Ionen auf die Mikrotubuli von Cilien. Z. Naturforsch.27b, 583 (1972)

    Google Scholar 

  • Hepler, P. K., McIntosh, J. R., Cleland, S.: Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol.45, 438–444 (1970)

    Google Scholar 

  • Hopkins, J. M.: Subsidiary components of the flaggela ofChlamydomonas reinhardii. J. Cell Sci.7, 823–839 (1970)

    Google Scholar 

  • Kirkpatrick, J. B.: Stability of brain microtubules in homogenates. J. Cell Biol.42, 600–602 (1969a)

    Google Scholar 

  • Kirkpatrick, J. B.: Microtubules in brain homogenates. Science163, 187–188 (1969b)

    Google Scholar 

  • Kirkpatrick, J. B., Hyams, L., Thomas, V. L., Howley, P. M.: Purification of intact microtubules from brain. J. Cell Biol.47, 384–394 (1970)

    Google Scholar 

  • Kuriyama, R., Sakai, H.: Viscometric demonstration of tubulin polymerization. J. Biochem.75, 463–471 (1974)

    Google Scholar 

  • Lane, N. J., Treherne, J. E.: Lanthanum staining of neurotubules in axons from cockroach ganglia. J. Cell Sci.7, 217–231 (1970)

    Google Scholar 

  • Ledbetter, M. D., Porter, K. R.: A “microtubule” in plant cell fine structure. J. Cell Biol.19, 239–250 (1963)

    Google Scholar 

  • Maser, M. D., Philpott, C. W.: Marginal bands in nucleated erythrocytes. Anat. Rec.150, 365–381 (1964)

    Google Scholar 

  • McGregor, H. C., Stebbings, H.: A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J. Cell Sci.6, 431–449 (1970)

    Google Scholar 

  • McIntosh, J. R.: Periodic projections from the surface of microtubules in developing chick sperm cells. J. Cell Biol.39, 89A (1968)

    Google Scholar 

  • McIntosh, J. R.: Bridges between microtubules. J. Cell Biol.61, 166–187 (1974)

    Google Scholar 

  • McIntosh, J. R., Landis, S. C.: The distribution of spindle microtubules during mitosis in cultured human cells. J. Cell Biol.49, 468–497 (1971)

    Google Scholar 

  • Mooseker, M. S., Tilney, L. G.: Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J. Cell Biol.56, 13–26 (1973)

    Google Scholar 

  • Nickolson, V. J., Veldstra, H.: The influence of various cations on the binding of colchicine by rat brain homogenates. Stabilization of intact neurotubules by zinc and cadmium ions. FEBS Letters23, 309–313 (1972)

    Google Scholar 

  • Nordlander, R. H., Singer, M.: Effects of temperature on the ultrastructure of severed crayfish motor axons. J. exp. Zool.184, 289–302 (1973)

    Google Scholar 

  • Palay, S. L., Satelo, C., Peters, A., Orkand, P. M.: The axon hillock and the initial segment. J. Cell Biol.38, 193–201 (1968)

    Google Scholar 

  • Raine, C. S., Wiśniewski, H.: On the occurrence of microtubules within mature astrocytes. Anat. Rec.167, 303–308 (1970)

    Google Scholar 

  • Rodríguez-Echandía, E. L., Piezzi, R. S.: Microtubules in the nerve fibers of the toadBufo arenarum Hensel. J. Cell Biol.39, 491–497 (1968)

    Google Scholar 

  • Rodríguez-Echandía, E. L., Ramirez, B. U., Fernandez, H. L.: Studies on the mechanism of inhibition of axoplasmic transport of neuronal organelles. J. Neurocytology2, 149–156 (1973)

    Google Scholar 

  • Roth, L. E., Pihlaja, D. J., Shigenaka, Y.: Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res.30, 7–37 (1970)

    Google Scholar 

  • Roth, L. E., Shigenaka, Y.: Microtubules in the heliozoan axopodium. II. Rapid degradation by cupric and nickelous ions. J. Ultrastruct. Res.31, 356–374 (1970)

    Google Scholar 

  • Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. II. Cell shape and microtubules. Z. Zellforsch.147, 107–125 (1973)

    Google Scholar 

  • Silver, M. D., McKinstry, J. E.: Morphology of microtubules in rabbit platelets. Z. Zellforsch.81, 12–17 (1967)

    Google Scholar 

  • Smith, D. S., Järlfors, U., Beránek, R.: The organization of synaptic axoplams in the lamprey (Petromyzon marinus) central nervous system. J. Cell Biol.46, 199–219 (1970)

    Google Scholar 

  • Stebbings, H., Willison, J. H. M.: Structure of microtubules: a study of freeze-etched and negatively stained microtubules from the ovaries ofNotonecta. Z. Zellforsch.138, 387–396 (1973)

    Google Scholar 

  • Tilney, L. G., Gibbins, J. R.: Differential effects of antimitotic agents on the stability and behavior of cytoplasmic and ciliary microtubules. Protoplasma (Wien)65, 167–179 (1968)

    Google Scholar 

  • Tucker, J. B.: Morphogenesis of a large microtubular organelle and its association with basal bodies in the ciliateNassula. J. Cell Sci.6, 385–429 (1970)

    Google Scholar 

  • Warner, F. D.: New observations on flagellar fine structure. The relationship between matrix structure and the microtubule component of the axoneme. J. Cell Biol.47, 159–182 (1970)

    Google Scholar 

  • Warner, F. D.: Spermatid differentiation in the blowflySarcophaga bullata with particular reference to flagellar morphogenesis. J. Ultrastruct. Res.35, 210–232 (1971)

    Google Scholar 

  • Weisenberg, R. C.: Microtubule formation in vitro in solutions containing low calcium concentrations. Science177, 1104–1105 (1972)

    Google Scholar 

  • Williams, N. E., Frankel, J.: Regulation of microtubules inTetrahymena. I. Electron microscopy of oral replacement. J. Cell Biol.56, 441–457 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. Dr. h.c. mult. Paul Weiss, dem wir für anregende Diskussionen danken, zum nächsten Geburtstag gewidmet

Frau E. Hohberg danken wir für sehr gewissenhaft durchgeführte technische Assistenz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krammer, E.B., Zenker, W. Effekt von Zinkionen auf Struktur und Verteilung der Neurotubuli. Acta Neuropathol 31, 59–69 (1975). https://doi.org/10.1007/BF00696887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696887

Key words

Navigation