Skip to main content
Log in

Methanobacterium formicicum, an endosymbiont of the anaerobic ciliateMetopus striatus McMurrich

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Gram-positive methanogenic endosymbiont of the sapropelic ciliateMetopus striatus was isolated and identified asMethanobacterium formicicum. In the ciliate cell the methanogens are in close association with microbody-like organelles. No mitochondria could be detected. The nature of the microbodies and the physiological background of the observed association are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Archer DB, Harris JE (1984) Methanogenic bacteria and methane production in various habitats. In: Barnes EM, Mead GC (eds) Anaerobic bacteria in habitats other than man. Symposium of the Society for Applied Bacteriology (in press)

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Čerkasov J, Čerkasovova A, Kulda J, Vilhelmova A (1978) Respiration of hydrogenosomes ofTritrichomonas foetus. J Biol Chem 253:1207–1214

    Google Scholar 

  • De Pytorac P, Rodrigues de Santa Rosa M (1976) Chondriome et bactéries chez certain ciliés de milieux mesosaprobes à polysaprobes. Compt Rend Soc Biol 170:100–103

    Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 fromMethanobacterium. Biochem 17:4583–4593

    Google Scholar 

  • Gould-Veley LJ (1905) A further contribution to the study ofPelomyxa palustris (Greeff). J Linn Soc 29:374–395

    Google Scholar 

  • Hook LA, Corder RE, Hamilton PT, Frea JI, Reeve JN (1984) Modification and use of an ultra-low oxygen chamber for the growth of methanogens. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Biosciences Colloquia, vol 8. Ohio State University Press, Columbus, Ohio (in press)

    Google Scholar 

  • Hutten TJ, De Jong MH, Peeters BPH, Van der Drift C, Vogels GD (1981) Coenzyme M (2-mercaptoethanesulfonic acid)-derivatives and their effects on methane formation from carbon dioxide and methanol by cell-free extracts ofMethanosarcina barkeri. J Bacteriol 145:27–34

    Google Scholar 

  • Jankowski AW (1964) Morphology and evolution of ciliophora III. Arch Protistenk 107:185–294

    Google Scholar 

  • Kahl A (1930–1935) Wimpertiere oder Ciliata (Infusoria). In: Dahl F (ed) Die Tierwelt Deutschlands. Fischer, Jena, part 18, 21, 25 and 30

    Google Scholar 

  • Keltjens JT, Van Beelen P, Stassen AM, Vogels GD (1983) 7-Methylpterin in methanogenic bacteria. FEMS Microbiol Lett 20:259–262

    Google Scholar 

  • Liebmann H (1936) Auftreten, Verhalten und Bedeutung der Protozoen bei der Selbstrinigung stehenden Abwassers. Z Hyg Infektionskr 118:29–63

    Google Scholar 

  • Liebmann H (1937) Bakteriensymbiose bei Faulschlammciliaten. Biol Zbl 57:442–445

    Google Scholar 

  • Liebmann H (1938) Biologie und Chemismus der Bleilochsperre. Arch Hydrobiol 33:1–81

    Google Scholar 

  • Lindmark DG, Müller M, Shio H (1975) Hydrogenosomes inTrichomonas vaginalis. J Parasitol 61:552–554

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:2317–2324

    Google Scholar 

  • Müller M (1980) The hydrogenosome. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic microbial cell. 30th Symp Soc Gen Microbiol. Cambridge University Press, Cambridge, pp 127–142

    Google Scholar 

  • Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99

    Google Scholar 

  • Van Beelen P, Dijkstra AC, Vogels GD (1983) Quantitation of coenzyme F420 in methanogenic sludge by the use of reversedphase High-Performance Liquid Chromatography and a flecrescence detector Eur J Appl Microbiol Biotechnol 18:67–69

    Google Scholar 

  • Van Beeler P, Labro JFA, Keltjens JT, Geerts WJ, Vogels GD, Baarhoven WH, Guijt W, Haasnoot CAG (1984) Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem 139:359–365

    Google Scholar 

  • Van Breggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Google Scholar 

  • Wolin BA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoonDasytrichia ruminantium Schuberg. Biochem J 200:365–372

    Google Scholar 

  • Yarlett N, Hann AC, Lloyd D (1983) Hydrogenosomes in a mixed isolate ofIsotricha prostoma andIsotricha intestinalis from ovine rumen contents. Comp Biochem Physiol 74B:357–364

    Google Scholar 

  • Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bruggen, J.J.A., Zwart, K.B., van Assema, R.M. et al. Methanobacterium formicicum, an endosymbiont of the anaerobic ciliateMetopus striatus McMurrich. Arch. Microbiol. 139, 1–7 (1984). https://doi.org/10.1007/BF00692703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692703

Key words

Navigation