Skip to main content
Log in

Inhibition of 7-hydroxymethotrexate formation by amsacrine

  • Original Articles
  • Methotrexate, 7-Hydroxymethotrexate, Amsacrine
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

The inhibition of methotrexate (MTX) biotransformation to 7-hydroxymethotrexate (7-OH-MTX) by 4′-(9-acridinylamino)-methanesulfon-m-anisidide (mAMSA) was studied in bile-drained rats in vivo and in incubates of isolated rat hepatocytes and rat-liver homogenate in vitro. In vivo, i.v. administration of 10 mg/kg mAMSA prior to [3H]-MTX infusion (50 mg/kg) led to a significant alteration in 7-OH-MTX kinetics. 7-OH-MTX peak concentrations and AUC in bile and serum were reduced by 75% and the recovery of MTX as 7-OH-MTX in bile and urine decreased by 70%, whereas MTX pharmacokinetics remained unaltered. In suspensions of isolated hepatocytes. 10 μm mAMSA led to a 54% decrease in 7-OH-MTX formation. However, the hepatocellular influx and efflux of MTX was not perturbed by mAMSA. Preincubation of rat-liver homogenates with 1.25–10 μm mAMSA reduced the formation of 7-OH-MTX by up to 73%. mAMSA appeared to inhibit MTX hydroxylation competitively, exhibiting aK iof 3 μm. Due to its inhibition of the MTX-oxidizing system, mAMSA may be beneficial in combination chemotherapy with MTX by reducing 7-OH-MTX-associated toxicity and, possibly, enhancing the cytotoxic effects of MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarbakke J, Ueland PM (1981) Interaction ofS-adenocyl-homocysteine with isolated rat hepatocytes. Mol Pharmacol 19:463

    Google Scholar 

  2. Banerjee AK, Lakhani S, Vincent M, Selby P (1988) Dose-dependent acute hepatitis associated with administration of high dose methotrexate. Hum Toxicol 7:561

    Google Scholar 

  3. Berg T, Mørland J (1975) Induction of tryptophan oxygenase by dexamethasone in isolated hepatocytes. Dependence on composition of medium and pH. Biochim Biophys Acta 392:233

    Google Scholar 

  4. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. J Cell Biol 43:506

    Google Scholar 

  5. Borsi JD, Sagen E, Romslo I, Moe PJ (1990) Comparative study of the pharmacokinetics of 7-hydroxymethotrexate after administration of methotrexate in the dose range of 0.5–33.6 g/m2 to children with acute lymphoblastic leukemia. Med Pediatr Oncol 18:217

    Google Scholar 

  6. Bradford MM (1976) Protein assay by dye binding. Anal Biochem 72:248

    Google Scholar 

  7. Breithaupt H, Kuenzlen E (1982) Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treat Rep 66:1733

    Google Scholar 

  8. Breithaupt H, Kuenzlen E (1983) High-dose methotrexate for osteosarcoma: toxicity and clinical results. Oncology 40:85

    Google Scholar 

  9. Bremnes RM, Slørdal L, Wist E, Aarbakke J (1989) Formation and elimination of 7-hydroxymethotrexate in the rat in vivo after methotrexate administration. Cancer Res 49:2460

    Google Scholar 

  10. Bremnes RM, Slørdal L, Wist E, Aarbakke J (1989) Dose-dependent pharmacokinetics of methotrexate and 7-hydroxymethotrexate in the rat in vivo. Cancer Res 49:6359

    Google Scholar 

  11. Bremnes RM, Smeland E, Huseby N-E, Eide TE, Aarbakke J (1991) Acute hepatotoxicity after high-dose methotrexate administration to rats. Pharmacol Toxicol (in press)

  12. Bremnes RM, Smeland E, Slørdal L, Wist E, Aarbakke J (1991) The effect of vindesine on methotrexate disposition in the rat. Biochem Pharmacol (in press)

  13. Cassileth PA, Gale RP (1986) mAMSA: a review. Leukemia Res 10: 1257

    Google Scholar 

  14. Chauvet M, Bourdeaux M, Briand C, Dell'Amico M, Gilli R, Diarra M (1983) Interactions of methotrexate metabolites with beef liver dihydrofolate reductase: I. Biochem Pharmacol 32:1059

    Google Scholar 

  15. Chen M-L, Chiou WL (1982) Tissue metabolism and distribution of methotrexate in rabbits. Drug Metab Dispos 10:706

    Google Scholar 

  16. Coleman R (1987) Biochemistry of bile secretion. Biochem J 244: 249

    Google Scholar 

  17. Cysyk RL, Shoemaker D, Adamson RH (1977) The pharmacologic disposition of 4′-(9-acridinylamino)methanesulfon-m-anisidide in mice and rats. Drug Metab Dispos 5:579

    Google Scholar 

  18. Drake JC, Allegra CJ, Baram J, Kaufman BT, Chabner BA (1987) Effects on dihydrofolate reductase of methotrexate metabolites and intracellular folates formed following methotrexate exposure of human breast cancer cells. Biochem Pharmacol 36:2416

    Google Scholar 

  19. Dukes HH (1947) The exchange of matter and energy. In: The physiology of domestic animals. Comstock, New York, p 415

    Google Scholar 

  20. El-Yazigi A, Amer M, Al-Saleh I, Martin C (1986) Pharmacokineties of methotrexate and its 7-OH metabolite in cancer patients treated with different high-methotrexate dosage regimens. Int J Cancer 38:795

    Google Scholar 

  21. Erttmann R, Bielack S, Landbeck G (1985) Kinetics of 7-hydroxymethotrexate after high-dose methotrexate therapy. Cancer Chemother Pharmacol 15:101

    Google Scholar 

  22. Fabre G, Matherly LH, Favre R, Catalin J, Cano JP (1983) In vitro formation of polyglutamyl derivatives of methotrexate and 7-hydroxymethotrexate in human lymphoblastic leukemia cells. Cancer Res 43:4648

    Google Scholar 

  23. Fabre G, Matherly LH, Fabre I, Cano J-P, Goldman ID (1984) Interactions between 7-hydroxymethotrexate and methotrexate at the cellular level in the Ehrlich ascites tumor in vitro. Cancer Res 44:970

    Google Scholar 

  24. Fabre G, Fabre I, Matherly LH, Cano J-P, Goldman ID (1984) Synthesis and properties of 7-hydroxymethotrexate polyglutamyl derivatives in Ehrlich ascites tumor cells in vitro. J Biol Chem 259: 5066

    Google Scholar 

  25. Farquhar D, Loo TL, Vadlamudi S (1972) Synthesis and biological evaluation of 7-hydroxymethotrexate, 7-methylaminopterin, and 7-methylmethotrexate. J Med Chem 15:567

    Google Scholar 

  26. Fry JR (1981) Preparation of mammalian hepatocytes. Methods Enzymol 77:130

    Google Scholar 

  27. Gaukroger JM, Wilson L (1984) Protection of cells from methotrexate toxicity by 7-hydroxymethotrexate. Br J Cancer 50:327

    Google Scholar 

  28. Gilli RM, Sari JC, Sica LM, Briand CM (1988) Thermodynamic study of the influence of NADPH on the binding of methotrexate and its metabolites to a mammalian dihydrofolate reductase. Biochim Biophys Acta 964:53

    Google Scholar 

  29. Gormley PE, Rossitch E, D'Anna ME, Cysyk R (1983) An extremely potent anilinoacridine inhibitor of aldehyde oxidase. Biochem Biophys Res Commun 116:759

    Google Scholar 

  30. Jacobs SA, Stoller RG, Chabner BA, Johns DG (1976) 7-Hydroxymethotrexate as a urinary metabolite in human subjects and rhesus monkeys receiving high dose methotrexate. J Clin Invest 57:534

    Google Scholar 

  31. Jacobs SA, Stoller RG, Chabner BA, Johns DG (1977) Dose-dependent metabolism of methotrexate in man and rhesus monkeys. Cancer Treat Rep 61:651

    Google Scholar 

  32. Johns DG, Valerino DM (1971) Metabolism of folate antagonists. Ann NY Acad Sci 186:378

    Google Scholar 

  33. Johns DG, Iannotti AT, Sartorelli AC, Booth BA, Bertino JR (1965) The identity of rabbit-liver methotrexate oxidase. Biochim Biophys Acta 105:380

    Google Scholar 

  34. Johns DG, Iannotti AT, Sartorelli AC, Bertino JR (1966) The relative toxicities of methotrexate and aminopterin. Biochem Pharmacol 15:555

    Google Scholar 

  35. Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA (1983) The pharmacology and clinical use of methotrexate. N Engl J Med 309:1094

    Google Scholar 

  36. Jurgens H, Ebell W, Bachmann R (1983) Essential laboratory determinations for monitoring high-dose methotrexate treatment with citrovorum factor rescue. Pediatr Pharmacol 3:157

    Google Scholar 

  37. Klaassen CD, Watkins JB (1984) Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 36:1

    Google Scholar 

  38. Lankelma J, Van der Klein E, Ramaekers F (1980) The role of 7-hydroxymethotrexate during methotrexate anticancer chemotherapy. Cancer Lett 9:133

    Google Scholar 

  39. Lazarus HM, Berger NA (1988) Chemotherapy of malignant disease: an update. Compr Ther 14:56

    Google Scholar 

  40. Lee I-J, Chan KK (1988) Metabolic interaction between methotrexate and 4′-(9-acridinylamino)methanesulfon-m-anisidide in the rabbit. Cancer Res 48:5106

    Google Scholar 

  41. Louie AC, Issell BF (1985) MAMSA (AMSA) — a clinical review. J Clin Oncol 3:562

    Google Scholar 

  42. Matherly LH, Seither RL, Goldman ID (1987) Metabolism of the diaminofolates: biosynthesis and pharmacology of the 7-hydroxyl and polyglutamyl metabolites of methotrexate and related antifolates. Pharmacol Ther 35:27

    Google Scholar 

  43. McGuire JJ, Hsieh P, Bertino JR (1984) Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochem Pharmacol 33:1355

    Google Scholar 

  44. Moran RG, Colman PD, Rosowsky A, Forsch RA, Chan KK (1985) Structural features of 4-amino antifolate required for substrate activity for mammalian folyl-polyglutamate synthetase. Mol Pharmacol 27:156

    Google Scholar 

  45. Omura GA, Winton EF, Vogler WR, Zuckerman KS, Grillo-Lopez AJ (1983) Phase II study of amsacrine gluconate in refractory leukemia. Cancer Treat Rep 67:1131

    Google Scholar 

  46. Sasaki K, Hosoya R, Wang Y-M, Raulston GL (1983) Formation and disposition of 7-hydroxymethotrexate in rabbits. Biochem Pharmacol 32:503

    Google Scholar 

  47. Seglen PO (1973) Preparation of rat liver cells: III. Enzymatic requirements for tissue dispersion. Exp Cell Res 82:391

    Google Scholar 

  48. Seither RL, Rape TJ, Goldman ID (1989) Further studies on the pharmacologic effects of the 7-hydroxy catabolite of methotrexate in the L1210 murine leukemia cell. Biochem Pharmacol 38:815

    Google Scholar 

  49. Sholar PW, Baram J, Seither R, Allegra CJ (1988) Inhibition of folate-dependent enzymes by 7-OH-methotrexate. Biochem Pharmacol 37:3531

    Google Scholar 

  50. Slørdal L, Kolmannskog S, Prytz PS, Moe PJ, Aarbakke J (1986) Pharmacokinetics of methotrexate and 7-hydroxymethotrexate after high-dose (33.6 g/m2) methotrexate therapy. Pediatr Hematol Oncol 3:127

    Google Scholar 

  51. Spiegel RJ, Pizzo PA, Fantone JC, Zimmermann HJ (1980) Fatal hepatic necrosis after high-dose chemotherapy following haloalkane anesthesia. Cancer Treat Rep 64:1023

    Google Scholar 

  52. Steinberg SE, Campbell CL, Bleyer WA, Hillmann RS (1982) Enterohepatic circulation of methotrexate in rats in vivo. Cancer Res 42:1279

    Google Scholar 

  53. Wang Y-M, Fujimoto T (1984) Clinical pharmacokinetics of methotrexate in children. Clin Pharmacokinet 9:335

    Google Scholar 

  54. Yu D, Brasch H, Iven H (1989) No influence of enzyme inhibitors on the hydroxylation of methotrexate in rats. Cancer Lett 48:153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was financially supported by the Norwegian Cancer Society and the Erna and Olav Aakre Foundation for Cancer Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremnes, R.M., Smeland, E., Willassen, N.P. et al. Inhibition of 7-hydroxymethotrexate formation by amsacrine. Cancer Chemother. Pharmacol. 28, 377–383 (1991). https://doi.org/10.1007/BF00685693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685693

Keywords

Navigation