Skip to main content
Log in

Studies on the mechanisms of gelation of kappa-carrageenan and agarose

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It has been established that hydrogen bonds control both gelation and helix formation completely in the case of agarose and partially in the case of kappa-carrageenan, the major role belonging in the latter case to the interactions of a polysaccharide with metal ions. Na+ and K+ ions form contact ion pairs with sulphate groups of kappa-carrageenan. It is supposed that an increase in the number of contact ion pairs together with association of macromolecules having unordered conformation, a decrease in the second virial coefficient, and a decrease in the refraction index increment (i.e., an increase in the solvation degree of dissolved particles) is a necessary condition for forming the kappa-carrageenan gel netwórk. A sufficient condition of kappa-carrageenan gelation is the intermolecular coordination binding of ions such as K+ ions, promoting gelation. The coil-to-helix transition of the polysaccharide is controlled by shielding the charge of kappa-carrageenan-sulphate groups. Hydrophobic interactions proved to be unessential for gelation of either agarose or kappa-carrageenan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plashchina IG, Grinberg NV, Braudo EE, Tolstoguzov VB (1980) Coll Polym Sci 258:939–943

    Google Scholar 

  2. Plashchina IG, Muratalieva IR, Braudo EE, Tolstoguzov VB (1986) Carbohydr Polym 6:15–34

    Google Scholar 

  3. Braudo EE, Muratalieva IR, Plashchina IG, Tolstoguzov VB (1991) Carbohydr Polym 15:317–321

    Google Scholar 

  4. Muratalieva IR, Plashchina IG, Braudo EE, Tolstoguzov VB (1987) Izvestija Akademii Nauk Kirgizskoj SSR. Khimiko-tekhnologicheskije Nauki (in Russian) N 3:10–16

    Google Scholar 

  5. Morris VJ (1986) In Mitchell JR, Ledward DA (eds) Functinal properties of food macromolecules. Elsevier Applied Science, London, New York, pp 121–170

    Google Scholar 

  6. Mirsky AE, Pauling L (1936) Proc Natl Acad Sci USA 22:439–447

    Google Scholar 

  7. Jencks WP (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New York, p 435

    Google Scholar 

  8. Izmaylova VN, Rebinder PA (1974) Strukturoobrazovanije v Belkovikh Sistemakh. Structure-formation in proteinaceous systems, in Russian. Nauka, Moscow, p 28

    Google Scholar 

  9. Morris VJ, Chilvers GR (1983) Carbohydr Polym 3:129–141

    Google Scholar 

  10. Semenova MG, Plashchina IG, Braudo EE, Tolstoguzov VB (1988) Carbohydr Polym 9:133–145

    Google Scholar 

  11. Watase M, Nishinari K (1982) Colloid Polym Sci 260:971–975

    Google Scholar 

  12. Watase M, Nishinari K (1982) Rheol Acta 21:318–326

    Google Scholar 

  13. Watase M, Nishinari K (1986) In: Phillips GO, Wedlock D, Williams P (eds) Gums and stabilizers for the food industry-3. Elsevier Science, Amsterdam, p 185

    Google Scholar 

  14. Kochetkov NA (ed) (1967) Metodi Khimii Uglevodov. Methods in carbohydrate chemistry, in Russian Mir Publ, Moscow, p 339

    Google Scholar 

  15. Usov AI, Yarockij SV, Shashkov AS (1978) Bioorgan Khim (in Russian) 4:745–751

    Google Scholar 

  16. Ferry JD (1948) Adv Protein Chem 4:1–78

    Google Scholar 

  17. Watase M, Arakawa K (1968) Nippon Kagaku Zasshi 89:383–387

    Google Scholar 

  18. Watase M, Nishinari K (1986) Food Hydrocoll 1:25–36

    Google Scholar 

  19. Grinberg NV, Plashchina IG, Braudo EE, Tolstoguzov VB (1980) Coll Polym Sci 258:1038–1043

    Google Scholar 

  20. Belton PS, Morris VJ, Tanner SF (1986) Macromolecules 19:1618–1621

    Google Scholar 

  21. Grasdalen H, Smidsrød O (1981) Macromolecules 14:229–231

    Google Scholar 

  22. Smidsrød O, Grasdalen H (1982) Carbohydr Polym 2:270–272

    Google Scholar 

  23. Belton PS, Morris VJ, Tanner SF (1985) Int J Biol Macromol 7:53–56

    Google Scholar 

  24. Rabinovitch E (1942) Rev Mod Phys 14:112–131

    Google Scholar 

  25. Orgel LE (1954) Quart Revs (London) 8:422–450

    Google Scholar 

  26. Platzman R, Franck J (1954) Z Phys 138:411–431

    Google Scholar 

  27. Smith M, Symons MCR (1958) Trans Faraday Soc 54:338–345

    Google Scholar 

  28. Mason SF (1961) Quart Revs (London) 15:287–391

    Google Scholar 

  29. Blandamer MJ, Gough TE, Symons MCR (1966) Trans Faraday Soc 62:286–295

    Google Scholar 

  30. Franck J, Kuhn H, Rollefson G (1927) Z Phys 43:155–163

    Google Scholar 

  31. v Halban H (1928) Z Elektrochemie 34:489–497

    Google Scholar 

  32. Fromherz H, Menschick W (1929) Z physik Chemie Abt B 3:1–40

    Google Scholar 

  33. Fromherz H, Menschick W (1930) Z physik Chemie Abt B 7:439–467

    Google Scholar 

  34. Yuryev VP, Braudo EE, Tolstoguzov VB (1983) Coll Polym Sci 261:210–214

    Google Scholar 

  35. Norton IT, Goodall DM, Morris ER, Rees DA (1983) J Chem Soc Faraday Trans I 79:2489–2500

    Google Scholar 

  36. Hiraoka M (1982) Crown compounds: their characteristics and applications. Kodansha, Elsevier, Amsterdam Oxford New York p 97

    Google Scholar 

  37. Mukerjee P, Mysels KJ, Kapauan P (1967) J Phys Chem 71:4166–4175

    Google Scholar 

  38. Gordon JE (1975) The organic chemistry of electrolyte solutions. Wiley-Intersci, New York, Ch. 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braudo, E.E., Muratalieva, I.R., Plashchina, I.G. et al. Studies on the mechanisms of gelation of kappa-carrageenan and agarose. Colloid Polym Sci 269, 1148–1156 (1991). https://doi.org/10.1007/BF00654123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654123

Key words

Navigation