Skip to main content
Log in

Analysis ofDrosophila chromosome4 using pulsed field gel electrophoresis

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or ∼6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berry AJ, Ajioka JW, Kreitman M (1991) Lack of polymorphism on theDrosophila fourth chromosome resulting from selection. Genetics 129:1111–1117

    Google Scholar 

  • Eaton S, Kornberg TB (1990) Repression ofci-D in posterior compartments ofDrosophila byengrailed. Genes Dev 4:1068–1077

    Google Scholar 

  • Echalier G (1976) In vitro established lines ofDrosophila cells and applications in physiological genetics. In: Kurstak E, Maramorosch K (eds) Invertebrate cell culture. Applications in medicine, biology and agriculture. Academic Press, New York, pp 131–150

    Google Scholar 

  • Ephrussi B, Sutton E (1944) A reconsideration of the mechanism of position effect. Proc Natl Acad Sci USA 30:183–197

    Google Scholar 

  • Fan JB, Chikashige Y, Smith CL, Niwa O, Yanagida M, Cantor CR (1989) Construction of a Not I restriction map of the fission yeastSchizosaccharomyces pombe genome. Nucleic Acids Res 17:2801–2818

    Google Scholar 

  • Feilotter H, Nurse P, Young P (1991) Genetic and molecular analysis ofcdr1/nim1 inSchizosaccharomyces pombe. Genetics 127:309–318

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    Google Scholar 

  • Fortini ME, Lai Z, Rubin GM (1991) TheDrosophila zfh-1 andzfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech Dev 34:113–122

    Google Scholar 

  • Geyer PK, Corces VG (1987) Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of theyellow locus inDrosophila melanogaster. Genes Dev. 1:996–1004

    Google Scholar 

  • Hochman B (1973) Analysis of a whole chromosome inDrosophila. Cold Spring Harbor Symp Quant Biol 38:581–589

    Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 58:1–114

    Google Scholar 

  • Karpen GH, Spradling AC (1990) Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation inDrosophila. Cell 63:97–107

    Google Scholar 

  • Kavenoff R, Zimm BH (1973) Chromosome-sized DNA molecules fromDrosophila. Chromosoma 41:1–27

    Google Scholar 

  • Kidwell MG (1983) Evolution of hybrid dysgenesis determinants inDrosophila melanogaster. Proc Natl Acad Sci USA 80:1655–1659

    Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome ofDrosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  • Locke J, Tartof KD (1993) Molecular cloning ofcubitus interruptus (ci) mutations suggests an explanation for the ci-position effect. Mol Gen Genet (in press)

  • Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin ofDrosophila melanogaster. Genetics 134:1149–1174

    Google Scholar 

  • Lundell MJ, Hirsh J (1992) Thezfh-2 gene product is a potential regulator of neuron-specific DOPA decarboxylase gene expression inDrosophila. Dev Biol 154:84–94

    Google Scholar 

  • Miklos GLG, Yamamoto M-T, Davis J, Pirrotta V (1988) Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin ofDrosophila melanogaster. Proc Natl Acad Sci USA 85:2051–2055

    Google Scholar 

  • Muller HJ, Pontecorvo G (1940) Recombinants betweenDrosophila species the F1 hybrids of which are sterile. Nature 146:199–200

    Google Scholar 

  • Muller HJ, Pontecorvo G (1942) Recessive genes causing interspecific sterility and other disharmonies betweenDrosophila melanogaster andsimulans. Genetics 27:157

    Google Scholar 

  • Orbach MJ, Vollrath D, Davis RW, Yanofski C (1988) An electrophoretic karyotype ofNeurospora crassa. Mol Cell Biol 8:1469–1473

    Google Scholar 

  • Orenic TV, Slusarski DC, Kroll KL, Holmgren RA (1990) Cloning and characterization of the segment polarity genecubitus interruptus Dominant ofDrosophila. Genes Dev 4:1053–1067

    Google Scholar 

  • Orr HA (1992) Mapping and characterization of a ‘speciation gene’ inDrosophila. Genet Res 59:73–80

    Google Scholar 

  • Roberts PA (1972) A possible case of position effect on DNA replication inDrosophila melanogaster. Genetics 72:607–614

    Google Scholar 

  • Rubin GM, Spradling AC (1983) Vectors for P-element-mediated gene transfer inDrosophila melanogaster. Nucleic Acids Res 11:6341–6351

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosomesized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Google Scholar 

  • Smith JP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    Google Scholar 

  • Sorsa V (1988) Chromosome maps ofDrosophila, 2 volumes. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Spierer P, Spierer A, Bender W, Hogness D (1983) Molecular mapping of genetic and chromomeric units inDrosophila melanogaster. J Mol Biol 168:35–50

    Google Scholar 

  • Uphoff DE (1949) The expression of alleles at thecubitus interruptus locus in hybrids betweenDrosophila melanogaster andsimulans. Genetics 34:315–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by: A.C. Spradling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locke, J., McDermid, H.E. Analysis ofDrosophila chromosome4 using pulsed field gel electrophoresis. Chromosoma 102, 718–723 (1993). https://doi.org/10.1007/BF00650898

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650898

Keywords

Navigation