Skip to main content
Log in

A note on evaporation from heated spikes

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated the effect of heat loss through evaporation on the surface temperature profile and the evaporation yield of an ion-induced spike. We derive a three-dimensional extension of a nonlinear integral equation first found by Mann and Wolf to describe the temperature profile in a semiinfinite medium in the presence of heat loss through the surface. The equation has been solved by perturbation expansion in powers of the evaporation rate. For heavy-ion induced, cylindrical elastic-collision spikes, noticeable but moderate corrections are found to evaporation yields estimated previously by neglecting heat loss due to evaporation. These results are relevant mainly to sputtering of metals by heavy atomic and molecular ion bombardment. Comments are also made on sputting of insulators both by heavy keV ions and by ionizing particles. Expressions for an effective sputter time and sputter area are derived for cylindrical geometry; both quantities turn out independent of the initial spike temperature. The sputter radius is normally greater than the depth of the crater formed; we conclude that the influence of crater formation on the evaporation yield is normally negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stark:Die Elektrizität in Gasen (JA. Barth, Leipzig 1902)

    Google Scholar 

  2. A. v. Hippel: Ann. Phys.80, 672 (1926)

    Google Scholar 

  3. E. Blechschmidt, A. v. Hippel: Ann. Phys.86, 1006 (1928)

    Google Scholar 

  4. K. Sommermeyer: Ann. Phys.25, 481 (1936)

    Google Scholar 

  5. C.H. Townes: Phys. Rev.65, 319 (1944)

    Google Scholar 

  6. M.W. Thompson, R.S. Nelson: Philos. Mag.7, 2015 (1962)

    Google Scholar 

  7. R.S. Nelson: Philos. Mag.11, 291 (1965)

    Google Scholar 

  8. S.K. Erents, G.M. McCracken: J. Appl. Phys.44, 3139 (1973)

    Google Scholar 

  9. G.H. Vineyard: Radiat. Eff.29, 245 (1976)

    Google Scholar 

  10. R. Kelly: Radiat. Eff.32, 91 (1977); Surf. Sci.90, 280 (1979)

    Google Scholar 

  11. R.E. Johnson, R. Evatt: Radiat. Eff.52, 187 (1980)

    Google Scholar 

  12. M.W. Thompson: Phys. Rep.69, 337 (1981)

    Google Scholar 

  13. M. Szymonski: Nucl. Instrum. Methods194, 523 (1982)

    Google Scholar 

  14. C. Claussen: Nucl. Instrum. Methods194, 567 (1982)

    Google Scholar 

  15. P. Sigmund: InInelastic Ion-Surface Collisions, ed. by N.H. Tolk et al. (Academic Press, New York 1977) p. 121

    Google Scholar 

  16. P. Sigmund, C. Claussen: J. Appl. Phys.52, 990 (1981)

    Google Scholar 

  17. P. Sigmund: InSputtering by Particle Bombardment I, ed. by R. Behrisch, Top. Appl. Phys.47 (Springer, Berlin, Heidelberg, New York 1981) Chap. 2

    Google Scholar 

  18. C. Claussen: Thesis, Odense University (1983)

  19. M. Szymonski: Nucl. Instrum. MethodsB2, 583 (1984)

    Google Scholar 

  20. P. Sigmund, M. Szymonski: Appl. Phys.A33, 141 (1984)

    Google Scholar 

  21. W. Mann, F. Wolf: Qu. Appl. Math.11, 163 (1951)

    Google Scholar 

  22. P.L. Chambré: J. Appl. Phys.30, 1683 (1959)

    Google Scholar 

  23. J.H. Roberts, W.R. Mann: Pac. J. Math.1, 431 (1951)

    Google Scholar 

  24. A. Friedmann: J. Math. Mech.8, 161 (1959)

    Google Scholar 

  25. J.B. Keller, W.E. Olmstead: Qu. Appl. Math.29, 559 (1972)

    Google Scholar 

  26. R.A. Handelsman, W.E. Olmstead: SIAM J. Appl. Math.22, 373 (1972)

    Google Scholar 

  27. N.L. Tao: J. Appl. Math. Phys. (ZAMP)32, 144 (1981)

    Google Scholar 

  28. H.S. Carslaw, J.C. Jaeger:Conduction of Heat in Solids (Clarendon Press, Oxford 1959)

    Google Scholar 

  29. P. Kapitza: Philos. Mag.45, 989 (1923)

    Google Scholar 

  30. M. Abramowitz, I.A. Stegun:Handbook of Mathematical Functions (Dover, New York 1965)

    Google Scholar 

  31. P. Sigmund: Appl. Phys. Lett.25, 169 (1974);27, 52 (1975)

    Google Scholar 

  32. H.H. Andersen, H.L. Bay: J. Appl. Phys.45, 953 (1974);46, 2416 (1975)

    Google Scholar 

  33. S.S. Johar, D.A. Thompson: Surf. Sci.90, 319 (1979)

    Google Scholar 

  34. R.W. Ollerhead, J. Bøttiger, J.A. Davies, J. L'Ecuyer, H.K. Haugen, N. Matsunami: Radiat. Eff.49, 203 (1980)

    Google Scholar 

  35. D.V. Stevanovic, D.A. Thompson, J.A. Davies: Nucl. Instrum. MethodsB1, 315 (1984)

    Google Scholar 

  36. J. Michl: Int. J. Mass. Spectrosc. Ion Phys.53, 255 (1983)

    Google Scholar 

  37. W.L. Brown, W.M. Augustyniak, E. Simmons, K.J. Marcantonio, L.J. Lanzerotti, R.E. Johnson, J.W. Boring, C.T. Reimann, G. Foti, V. Pirronello: Nucl. Instrum. Methods198, 1 (1982)

    Google Scholar 

  38. L.E. Seiberling, J.E. Griffith, T.A. Tombrello: Radiat. Eff.52, 201 (1980)

    Google Scholar 

  39. F. Besenbacher, J. Bøttiger, O. Graversen, J.L. Hansen: Nucl. Instrum. Methods191, 221 (1981)

    Google Scholar 

  40. R.E. Johnson, M. Inokuti: Nucl. Instrum. Methods206, 289 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Institut für Theoretische Physik, Technische Universität, D-3300 Braunschweig, Fed. Rep. Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbassek, M., Sigmund, P. A note on evaporation from heated spikes. Appl. Phys. A 35, 19–25 (1984). https://doi.org/10.1007/BF00620295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620295

PACS

Navigation