Skip to main content
Log in

Contraluminal bicarbonate transport in the proximal tubule of the rat kidney

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In order to measure the contraluminal bicarbonate flux in situ we applied the stopped flow capillary microperfusion technique and measured the influx of14C-bicarbonate buffer into cortical tubular cells at pH 8. It was found that the influx in percent of the starting concentration is larger at 20 mmol/l bicarbonate than at 1 mmol/l, indicating a sigmoidal type influx curve. At 20 mmol/l bicarbonate the influx was inhibited by 44%, when Na+ was replaced by choline. Replacement of gluconate by chloride or sulfate did not change H14CO 3 influx. At this bicarbonate concentration, influx is inhibited by 10 mmol/l 4,4′-diisothiocyanato-2,2′-stilbenedisulfonate (DIDS) (22%), 5 mmol/l of the carbonic anhydrase blocker ethoxyzolamide (40%) as well as by 5 mmol/l of the arginine reagent 4-nitrophenylglyoxal (31%). At 1 mmol/l bicarbonate starting concentration, bicarbonate influx was inhibited when chloride in the perfusate was present or when sulphate was added. Replacement of sodium by choline did not change bicarbonate influx. Addition of DIDS and 8-anilino-naphthalene-1-sulfonate (5 mmol/l each) inhibited 1 mmol/l bicarbonate influx 39 and 49%, respectively. The para-aminohippurate transport blocker dipropylsulfamoyl-benzoate (probenecid), the chloride channel blocker 5-nitro-2′-(3-phenylpropylamino)-benzoate (NPPB), the SH group blocker 2-(3-hydroxymercuri-2-methoxypropyl)-carbamoyl-phenoxyacetate (mersalyl), and formate did not inhibit bicarbonate influx, at 20 and at 1 mmol/l H14CO 3 starting concentration. The data are compatible with the assumption of 1. a contraluminal (HCO 3 )3/Na+ cotransporter inhibitable by DIDS, carbonic anhydrase inhibitors and 4-nitrophenylglyoxal, 2. a HCO 3 /anion exchange system, which accepts sulfate and chloride and is inhibitable by the anion exchange blockers DIDS and 8-anilino-naphthalene-1-sulfonate, and 3. a HCO 3 influx component which could not be influenced by Na+, Cl, nor by the inhibitors applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiba T, Alpern RJ, Eveloff, J, Calamina J, Warnock DG (1986) Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles. J Clin Invest 78:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alpern RJ (1985) Mechanism of basolateral membrane H+/OH/HCO 3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J Gen Physiol 86:613–636

    Article  CAS  PubMed  Google Scholar 

  3. Alpern RJ, Chambers M (1986) Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration. J Clin Invest 78:502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alpern RJ, Chambers M (1987) Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and-independent modes. J Gen Physiol 89:581–598

    Article  CAS  PubMed  Google Scholar 

  5. Biagi BA (1985) Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro. J Membr Biol 88:25–31

    Article  CAS  PubMed  Google Scholar 

  6. Biagi BA, Sohtell M (1986) Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule. Am J Physiol 250:F267-F272

    CAS  PubMed  Google Scholar 

  7. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO 3 transport. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  8. Brisolla-Diuana A, Amorena C, Malnic G (1985) Transfer of base across the basolateral membrane of cortical tubules of rat kidney. Pflügers Arch 405:209–215

    Article  CAS  PubMed  Google Scholar 

  9. Burckhardt BC, Frömter E (1987) Evidence for OH/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO 3 -free solutions. Pflügers Arch 409:132–137

    Article  CAS  PubMed  Google Scholar 

  10. Edelman A, Bouthier M, Anagnostopoulos T (1981) Chloride distribution in the proximal convoluted tubule of Necturus kidney. J Membr Biol 62:7–17

    Article  CAS  PubMed  Google Scholar 

  11. Fritzsch G, Haase W, Rumrich G, Fasold H, Ullrich KJ (1984) A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells. Pflügers Arch 400:250–256

    Article  CAS  PubMed  Google Scholar 

  12. Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of the rat kidney. Pflügers Arch 343:189–220

    Article  PubMed  Google Scholar 

  13. Frömter E, Sato K (1976) Electrical events in active H+/HCO 3 transport across rat kidney proximal tubular epithelium. In: Kasbekar DK, Sachs G, Rehm WS (eds) Gastric hydrogen ion secretion. Dekker, New York, pp 382–403

    Google Scholar 

  14. Grassl SM, Aronson PS (1986) Na+/HCO 3 Co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 261:8778–8783

    CAS  PubMed  Google Scholar 

  15. Grassl SM, Holohan PD, Ross CR (1987) HCO 3 transport in basolateral membrane vesicles isolated from rat renal cortex. J Biol Chem 262:2682–2687

    CAS  PubMed  Google Scholar 

  16. Guggino WB, London R, Boulpaep EL, Giebisch G (1983) Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J Membr Biol 71:227–240

    Article  CAS  PubMed  Google Scholar 

  17. Hagenbuch B, Stange G, Murer H (1985) Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles. Pflügers Arch 405:202–208

    Article  CAS  PubMed  Google Scholar 

  18. Jentsch TJ, Matthes H, Keller SK, Wiederholt M (1986) Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1) Am J Physiol 251:F954-F968

    CAS  PubMed  Google Scholar 

  19. Jentsch TJ, Schill BS, Schwartz P, Matthes H, Keller SK, Wiederholt M (1985) Kidney epithelial cells of monkey origin (BSC-1) express a sodium bicarbonate cotransport. J Biol Chem 260:15554–15560

    CAS  PubMed  Google Scholar 

  20. Krapf R, Alpern RJ, Rector Jr FC, Berry CA (1987) Basolateral membrane Na/base cotransport is dependent on CO2/HCO 3 in the proximal convoluted tubule. J Gen Physiol, in press

  21. Löw I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334-F342

    PubMed  Google Scholar 

  22. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakhoul NL, Boron WF (1987) pHi regulation in the S3 proximal tubule: A novel HCO 3 -dependent acid-extruder at the basolateral membrane. Kidney Int 31:A412

    Google Scholar 

  24. Pritchard JB, Renfro JL (1983) Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci USA 80:2603–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sasaki S, Shiigai T, Yoshiyama N, Takeuchi J (1987) Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule. Am J Physiol 252:F11-F18

    CAS  PubMed  Google Scholar 

  26. Soleimani M, Grassl SM, Aronson PS (1987) Stoichiometry of Na+-HCO 3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 79:1276–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Talor Z, Gold RM, Yang WC, Arruda JAL (1987) Anion exchanger is present in both luminal and basolateral renal membranes. Eur J Biochem 164:695–702

    Article  CAS  PubMed  Google Scholar 

  28. Ullrich KJ, Papavassiliou F (1981) Bicarbonate reabsorption in the papillary collecting duct of rats. Pflügers Arch 389:271–275

    Article  CAS  PubMed  Google Scholar 

  29. Ullrich KJ, Radtke HW, Rumrich G (1971) The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflügers Arch 330:149–161

    Article  CAS  PubMed  Google Scholar 

  30. Ullrich KJ, Rumrich G, Klöss S (1984) Contraluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effect of K+, Na+, Ca2+, H+ and anions. Pflügers Arch 402:264–271

    Article  CAS  PubMed  Google Scholar 

  31. Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987) Contraluminal paraaminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: Aliphatic dicarboxylic acids. Pflügers Arch 408:38–45

    Article  CAS  PubMed  Google Scholar 

  32. Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987) Contraluminal paraaminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflügers Arch 409:229–235

    Article  CAS  PubMed  Google Scholar 

  33. Ullrich KJ, Rumrich G, Klöss S (1974) Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch 351:35–48

    Article  CAS  PubMed  Google Scholar 

  34. Ullrich KJ, Rumrich G, Klöss S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate-ester, sulfonates and amino sulfonates. Pflügers Arch 404:293–299

    Article  CAS  PubMed  Google Scholar 

  35. Ullrich KJ, Rumrich G, Klöss S (1985) Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di- and tri-carboxylates and sulfocarboxylates. Pflügers Arch 404:300–306

    Article  CAS  PubMed  Google Scholar 

  36. Yoshitomi K, Burckhardt BC, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Arch 405:360–366

    Article  CAS  PubMed  Google Scholar 

  37. Yoshitomi K, Frömter E (1985) How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? Pflügers Arch 405, Suppl 1, 121–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, K.J., Papavassiliou, F. Contraluminal bicarbonate transport in the proximal tubule of the rat kidney. Pflugers Arch. 410, 501–504 (1987). https://doi.org/10.1007/BF00586532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586532

Key words

Navigation