Skip to main content
Log in

The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Studies were undertaken to define the effect of acute metabolic alkalosis (hypertonic sodium bicarbonate i.v.) on the chemical gradients for potassium, sodium and chloride across the apical membrane of individual renal tubule cells. Electron microprobe analysis was used on freeze-dried cryosections of the rat renal cortex to measure electrolyte concentrations in proximal tubule cells and in the various cell types of the superficial distal tubule. Analyses were also performed in fluid samples obtained by micropuncture from proximal and early and late distal collection sites. Compared with the appropriate controls (hypertonic sodium chloride i.v.), administration of sodium bicarbonate resulted only in small and mostly insignificant increases in cell potassium concentrations and induced only minor alterations in the cell/tubule fluid potassium concentration gradient for all cell types analysed. This observation suggests that under this condition factors other than an increase in cell potassium concentration are important in modulating potassium transfer across the apical membrane of potassium secreting cells. Nevertheless, since in alkalosis phosphorus and cell dry weight were decreased, and hence cell volume increased, in all but the intercalated cells, actually the potassium content of most tubular cells was higher under this condition. In comparison with animals infused with isotonic saline at low rates (hydropenic controls), infusion of either hypertonic sodium chloride or sodium bicarbonate led to a sharp increase in distal tubule fluid sodium concentrations and in the sodium concentrations of distal convoluted tubule, connecting tubule and principal cells, indicating that under both conditions the primary event causing enhanced transepithelial sodium absorption is stimulation of the sodium entry step. The ensuing rise in cell sodium concentration shold lead secondarily to stimulation of active basolateral sodium extrusion. Intercalated cell sodium concentration was higher only in alkalosis which supports the notion that this cell type is not involved in transepithelial sodium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer R, Rick R (1978) Computer analysis of X-ray spectra (EDS) from thin biological specimens. X-ray Spectrom 7:63–69

    Article  CAS  Google Scholar 

  2. Beck F, Bauer R, Bauer U, Mason J, Dörge A, Rick R, Thurau K (1980) Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int 17:756–763

    PubMed  CAS  Google Scholar 

  3. Beck F, Dörge A, Mason J, Rick R, Thurau K (1982) Element concentrations of renal and hepatic cells under potassium depletion. Kidney Int 22:250–256

    PubMed  CAS  Google Scholar 

  4. Beck FX, Dörge A, Rick R, Schramm M, Thurau K (1987) Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflügers Arch 409:477–485

    Article  PubMed  CAS  Google Scholar 

  5. Beck FX, Dörge A, Giebisch G, Thurau K (1988) Cell rubidium uptake: a method for studying functional heterogeneity in the nephron. Kidney Int (in press)

  6. Boudry JF, Stoner LC, Burg MB (1976) Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230:239–244

    PubMed  CAS  Google Scholar 

  7. Cala PM (1980) Volume regulation byAmphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol 76:683–708

    Article  PubMed  CAS  Google Scholar 

  8. Chaillet RJ, Lopes AG, Boron WF (1985) Basolateral Na−H exchange in the rabbit cortical collecting tubule. J Gen Physiol 86:795–812

    Article  PubMed  CAS  Google Scholar 

  9. Cook DL, Ikeuchi M, Fujimoto WY (1984) Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature 311:269–271

    Article  PubMed  CAS  Google Scholar 

  10. Costanzo LS, Windhager EE (1986) Transport functions of the distal convoluted tubule. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders, chapter 40, 2nd edn. Plenum Medical Book Company, New York London, pp 727–750

    Google Scholar 

  11. Crayen M, Thoenes W (1975) Architektur und cytologische Charakterisierung des distalen Tubulus der Rattenniere. Fortschr Zool 23:279–288

    PubMed  CAS  Google Scholar 

  12. De Mello-Aires M, Giebisch G, Malnic G (1973) Kinetics of potassium transport across single distal tubules of rat kidney. J Physiol 232:47–70

    PubMed  Google Scholar 

  13. Dörge A, Rick R, Gehring K, Thurau K (1978) Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues. Pflügers Arch 373:85–97

    Article  PubMed  Google Scholar 

  14. Edelman A, Curci S, Samarzija I, Frömter E (1978) Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflügers Arch 378:37–45

    Article  PubMed  CAS  Google Scholar 

  15. Ellison DH, Velazquez H, Wright FS (1985) Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am J Physiol 248:F638-F649

    PubMed  CAS  Google Scholar 

  16. Fricson AC, Spring KR (1982) Volume regulation byNecturus gallbladder: apical Na+−H+ and Cl−HCO 3 exchange. Am J Physiol 243:C146–C150

    Google Scholar 

  17. Führ J, Kaczmarczyk J, Krüttgen CD (1955) Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr 33:729–730

    Article  PubMed  Google Scholar 

  18. Garcia-Filho E, Malnic G, Giebisch G (1980) Effects of changes in electrical potential difference on tubular potassium transport. Am J Physiol 238:F235-F246

    PubMed  CAS  Google Scholar 

  19. Giebisch G, Malnic G, Berliner RW (1986) Renal transport and control of potassium excretion. In: Brenner BM, Rector FC Jr (eds) The kidney, chapter 6, vol I, 3rd edn. Saunders, Philadelphia, pp 177–205

    Google Scholar 

  20. Gitter AH, Beyenbach KW, Christine CW, Gross P, Minuth WW, Frömter E (1987) High-conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflügers Arch 408:282–290

    Article  PubMed  CAS  Google Scholar 

  21. Grantham JJ, Burg MB, Orloff J (1970) The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J Clin Invest 49:1815–1826

    PubMed  CAS  Google Scholar 

  22. Greger R, Weidtke C, Schlatter E, Wittner M, Gebler B (1984) Potassium activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflügers Arch 401:52–57

    Article  PubMed  CAS  Google Scholar 

  23. Guggino WB, London R, Boulpaep EL, Giebisch G (1983) Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: dependence on bicarbonate and sodium. J Memb Biol 71:227–240

    Article  CAS  Google Scholar 

  24. Hunter M, Lopes AG, Boulpaep E, Giebisch G (1986) Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule. Am J Physiol 251:F725-F733

    PubMed  CAS  Google Scholar 

  25. Jones SM, Hayslett JP (1983) Demonstration of active potassium secretion in the late distal tubule. Am J Physiol 245:F83-F88

    PubMed  CAS  Google Scholar 

  26. Jørgensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60:864–917

    PubMed  Google Scholar 

  27. Kaissling B (1982) Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol 243:F211-F226

    PubMed  CAS  Google Scholar 

  28. Kaissling B, Le Hir M (1982) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I. Structural changes. Cell Tissue Res 224:469–492

    Article  PubMed  CAS  Google Scholar 

  29. Kaissling B, Bachmann S, Kriz W (1985) Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol 248:F374-F381

    PubMed  CAS  Google Scholar 

  30. Kashgarian M, Biemesderfer D, Caplan M, Forbush B III (1985) Monoclonal antibody to Na,K-ATPase: Immunocytochemical localization along nephron segments. Kidney Int 28:899–913

    PubMed  CAS  Google Scholar 

  31. Khuri RN, Agulian SK, Kalloghlian A (1972) Intracellular potassium in cells of the distal tubule. Pflügers Arch 335: 297–308

    Article  PubMed  CAS  Google Scholar 

  32. Khuri RN, Agulian SK, Bogharian K (1974) Electrochemical potentials of potassium in proximal renal tubule of rat. Pflügers Arch 346:319–326

    Article  PubMed  CAS  Google Scholar 

  33. Khuri RN, Wiederholt M, Strieder N, Giebisch G (1975) Effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol 228:1249–1261

    PubMed  CAS  Google Scholar 

  34. Khuri RN, Wiederholt M, Strieder N, Giebisch G (1975) Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am J Physiol 228:1262–1268

    PubMed  CAS  Google Scholar 

  35. Koeppen B, Giebisch G, Malnic G (1985) Mechanism and regulation of renal tubular acidification. In: Seldin DW, Giebisch G (eds) The kidney — Physiology and pathophysiology, chapter 65, vol 2. Raven Press, New York, pp 1491–1525

    Google Scholar 

  36. Kunau RT, Webb HL, Borman SC (1974) Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J Clin Invest 54:1488–1495

    PubMed  Google Scholar 

  37. Kunau RT, Webb HL, Borman SC (1974) Characteristics of sodium reabsorption in the loop of Henle and distal tubule. Am J Physiol 227:1181–1191

    PubMed  CAS  Google Scholar 

  38. Le Hir M, Kaissling B, Dubach UC (1982) Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na−K-ATPase activity. Cell Tissue Res 224:493–504

    Article  PubMed  Google Scholar 

  39. Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1-F15

    CAS  Google Scholar 

  40. Malnic G, De Mello-Aires M, Giebisch G (1971) Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol 221:1192–1208

    PubMed  CAS  Google Scholar 

  41. O'Neil RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82:281–295

    Article  PubMed  Google Scholar 

  42. Rick R, Roloff C, Dörge A, Beck FX, Thurau K (1984) Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media. J Membr Biol 78:129–145

    Article  PubMed  CAS  Google Scholar 

  43. Rogers TA, Wachenfeld AE (1958) Effect of physiologic acids on electrolytes in rat diaphragm. Am J Physiol 193:623–626

    PubMed  CAS  Google Scholar 

  44. Sansom SC, O'Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol 248:F858-F868

    PubMed  CAS  Google Scholar 

  45. Sansom SC, O'Neil RG (1986) Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am J Physiol 251:F743-F757

    PubMed  CAS  Google Scholar 

  46. Scribner BH, Fremont-Smith K, Burnell JM (1955) The effect of acute respiratory acidosis on the internal equilibrium of potassium. J Clin Invest 34:1276–1285

    PubMed  CAS  Google Scholar 

  47. Stanton BA, Giebisch G (1982) Effects of pH on potassium transport by renal distal tubule. Am J Physiol 242:F544-F551

    PubMed  CAS  Google Scholar 

  48. Stanton BA, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int 19:36–48

    PubMed  CAS  Google Scholar 

  49. Stokes JB (1981) Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241:F395-F402

    PubMed  CAS  Google Scholar 

  50. Swan RC, Pitts RF, Madisso H (1955) Neutralization of infused acid by nephrectomized dogs. J Clin Invest 34:205–212

    Article  PubMed  CAS  Google Scholar 

  51. Toussaint C, Vereerstraeten P (1962) Effects of blood pH changes on potassium excretion in the dog. Am J Physiol 202:768–772

    PubMed  CAS  Google Scholar 

  52. Windhager EE, Taylor A, Maack T, Lee CO, Lorenzen M (1982) Studies on renal tubular function. In: Corradina RA (ed) Functional regulation at the cellular and molecular levels. Elsevier/North-Holland, Amsterdam, pp 299–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, FX., Dörge, A., Rick, R. et al. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflugers Arch. 411, 259–267 (1988). https://doi.org/10.1007/BF00585112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585112

Key words

Navigation