Skip to main content
Log in

Arabidopsis thaliana expressing the cauliflower mosaic virus ORF VI transgene has a late flowering phenotype

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Expression of open reading frame (ORF) VI of cauliflower mosaic virus (CaMV) in transgenicArabidopsis thaliana caused a typical syndrome characterised by leaf chlorosis, vein clearing, plant stunting and reduced fertility. In addition and in comparison to untransformed controls we observed the formation of much larger rosettes of leaves combined with much later flowering and more extensive tillering. In these aspects, the ORF VI transgenic plants resembled late flowering mutants. All these phenotypes correlated with expression of ORF VI in three lines of transgenic plants which were produced independently, with different Ti-plasmid derived vectors and with different selective markers. The late flowering phenotype cosegregated with the transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez-ZapaterJ.M. and SommervilleC.R., Plant Physiol92, 770–776, 1990.

    Google Scholar 

  2. KoornneefM., HanhartC.J., and van derVeenJ.H., Mol Gen Genet229, 57–66, 1991.

    Google Scholar 

  3. SungZ.R., BelachewA., ShunongB., and Bertrand-GarciaR., Science258, 1645–1647, 1992.

    Google Scholar 

  4. BurnJ.E., BagnallD.J., MetzgerJ.D., DennisE.S., and PeacockW.J., Proc Natl Acad Sci USA,90 287–291, 1992.

    Google Scholar 

  5. ShepherdR.J., RichinsR.D., and ShallaT.A., Virology102, 389–400, 1979.

    Google Scholar 

  6. SchoelzJ.E. and ShepherdR.J., Virology162, 30–37, 1988.

    Google Scholar 

  7. SchoelzJ.E., ShepherdR.J., and DaubertS.D., J. Mol Cell Biol6, 2632–2637, 1986.

    Google Scholar 

  8. OlszewskiN., HagenG., and GuilfoyleT.J., Cell29, 395–402, 1982.

    Google Scholar 

  9. CoveyS.N. and HullR., Virology111, 463–474, 1981.

    Google Scholar 

  10. OdellJ.T. and HowellS.H., Virology101, 349–359, 1980.

    Google Scholar 

  11. Kiss-LászlóZ., BlancS., and HohnT., EMBO J14, 3553–3562, 1995.

    Google Scholar 

  12. DaubertS.D., SchoelzJ.E., DebaoL., and ShepherdR.J., J Mol Appl Genet2, 537–547, 1984.

    Google Scholar 

  13. StratfordR. and CoveyS.N., Virology172, 451–459, 1989.

    Google Scholar 

  14. GoldbergK.B., KiernanJ., and ShepherdR.J., Molecular Plant-Microbe Interactions4, 182–189, 1991.

    Google Scholar 

  15. BonnevilleJ-M., SanfaçonH., FüttererJ., and HohnT., Cell59, 1135–1143, 1989.

    Google Scholar 

  16. GowdaS., WuF.C., ScholthofH.B., and ShepherdR.J., Proc Natl Acad Sci USA86, 9203–9207, 1989.

    Google Scholar 

  17. FüttererJ. and HohnT., EMBO J10, 3887–3896, 1991.

    Google Scholar 

  18. ScholthofH.B., GowdaS., WuF.C., and ShepherdR.J., J Virology66, 3131–3139, 1992.

    Google Scholar 

  19. ZijlstraC. and HohnT., Plant Cell4, 1471–1484, 1992.

    Google Scholar 

  20. BaughmanG.A., JacobsJ.D., and HowellS.H., Proc Natl Acad Sci USA85, 733–737, 1988.

    Google Scholar 

  21. TakahashiH., ShimamotoK., and EharaY., Mol Gen Genet216, 188–194, 1989.

    Google Scholar 

  22. KiermanJ., GoldbergK.B., YoungM.J., SchoelzJ.E., and ShepherdR.J., Plant Science64, 67–78, 1989.

    Google Scholar 

  23. BalázsE., Virus Genes6, 205–211, 1990.

    Google Scholar 

  24. SchoelzJ.E., GoldbergK.B., and KiernanJ., Molecular Plant-Microbe Interactions4, 350–355, 1991.

    Google Scholar 

  25. MelcherU., Botanical Gazette150, 139–147, 1989.

    Google Scholar 

  26. BalázsE. and LebeurierG., Arabidopsis Inf Serv18, 130–135, 1981.

    Google Scholar 

  27. LeisnerS.M. and HowellS.H.,Phytopathology 82, 1042–1045, 1992.

    Google Scholar 

  28. MatzkeA.J.M. and MatzkeM.A., Plant physiol107, 679–685, 1995.

    Google Scholar 

  29. LeisnerS.M., TurgeonR., and HowellS.H., Molecular Plant-Microbe Interactions5, 41–47, 1992.

    Google Scholar 

  30. LeisnerS.M., TurgeonR., and HowellS.H., Plant Cell5, 191–202, 1993.

    Google Scholar 

  31. HinnebuschA.G., TIG4, 169–174, 1988.

    Google Scholar 

  32. DeTapiaM., HimmelbachA., and HohnT., EMBO J12 3305–3314, 1993.

    Google Scholar 

  33. GalS., PisanB., HohnT., GrimsleyN., and HohnB., Virology187, 525–533, 1992.

    Google Scholar 

  34. PaszkowskiJ., ShillitoR.D., SaulM., MandakV., HohnT., HohnB., and PotrykusI., EMBO J3, 2717–2722, 1984.

    Google Scholar 

  35. Yanisch-PerronC., VieiraJ., and MessingJ., Gene33, 102–119, 1983.

    Google Scholar 

  36. DeblaereR., BytebierB., DeGreveH., SchellJ., VanMontaguM., and LeemansJ., Nucl Acids Res13, 4777–4788, 1985.

    Google Scholar 

  37. MattanovichD., RuekerF., daCamara MachadoA., LaimerM., RegnerF., SteinkellnerH., HimmlerG., and KatingerH., Nucl Acids Res17, 6747–6752, 1989.

    Google Scholar 

  38. SchmidtR. and WillmitzerL., Plant Cell Rep7, 583–586, 1988.

    Google Scholar 

  39. VanLijsebettensM., VanderhaegenR., and VanMontaguM., Theor Appl Genet81, 277–284, 1991.

    Google Scholar 

  40. Napp-ZinnK. (ed. L.T.Evans).The induction of flowering. Macmillan, Melbourne, 1969, pp. 291–304.

    Google Scholar 

  41. MurrayM.G. and ThompsonW.F., Nucl Acids Res8, 4321–4325, 1980.

    Google Scholar 

  42. Mittelsten ScheidO., PaszkowskiJ., and PotrykusI., Molec Gen Genet228, 104–112, 1991.

    Google Scholar 

  43. FeinbergA.P. and FogelsteinB., Anal Biochem132, 6–13, 1983.

    Google Scholar 

  44. MayerS.E., HahneG., PalmeK., and SchellJ., Plant Cell Rep6, 77–81, 1987.

    Google Scholar 

  45. RamagliL.S. and RodriguezL.V., Electrophoressis6, 559–563, 1985.

    Google Scholar 

  46. LaemmliU.K., Nature227, 680–685, 1970.

    Google Scholar 

  47. DammB. and WillmitzerL., Mol Gen Genet213, 15–20, 1988.

    Google Scholar 

  48. DammB., SchmidtR., and WillmitzerL., Mol Gen Genet217, 6–12, 1989.

    Google Scholar 

  49. FüttererJ., GordonK., PfeifferP., SanfaçonH., PisanB., BonnevilleJ-M., and HohnT., Virus Genes3, 45–55, 1989.

    Google Scholar 

  50. BradfordM.M., Analyt Biochem72, 248–254, 1976.

    Google Scholar 

  51. JeffersonR.A., KavanaghT.A., and BevanM.W., EMBO J6, 3901–3907, 1987.

    Google Scholar 

  52. JeffersonR.A., GoldsbroughA., and BevanM.W., Plant Mol Biol14, 995–1006, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijlstra, C., Schärer-Hernández, N., Gal, S. et al. Arabidopsis thaliana expressing the cauliflower mosaic virus ORF VI transgene has a late flowering phenotype. Virus Genes 13, 5–17 (1996). https://doi.org/10.1007/BF00576974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576974

Key words

Navigation