Skip to main content
Log in

Transport properties of 1,1,1,2-tetrafluoroethane (R134a)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New equations for the thermal conductivity and the viscosity of R134a that are valid in a wide range of pressures and temperatures are presented. They were obtained through a theoretically based, critical evaluation of the available experimental data, which showed considerable inconsistencies between data sets, in particular in the vapor phase. In the critical region the observed enhancement in the thermal conductivity is well represented by a crossover model for the transport properties of fluids. Since thermodynamic properties enter into the calculation of the critical enhancement of the transport properties, a new fundamental equation for the critical region was developed also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Stephan and R. Krauss, Proc. Symp. Solid Sorption Refrig. (International Institute of Refrigeration, Comm. B1, Paris, 1992), p. 32 [also to be published as a special issue of J. Heal. Recov. Syst. (1993)].

    Google Scholar 

  2. J. V. Sengers, Int. J. Thermophys. 6:203 (1985).

    Google Scholar 

  3. C. A. Nieto de Castro, in Supercritical Fluid Technology, T. J. Bruno and J. F. Ely, eds. (CRC Press, Boca Raton FL, 1991), p. 335.

    Google Scholar 

  4. A. Laesecke, R. A. Perkins, and C. A. Nieto de Castro, Fluid Phase Equil. 80:263 (1992).

    Google Scholar 

  5. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat, J. Phys. Chem. Ref. Data 19:763 (1990).

    Google Scholar 

  6. A. Laesecke, R. Krauss, K. Stephan, and W. Wagner, J. Phys. Chem. Ref. Data 19:1089 (1990).

    Google Scholar 

  7. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  8. G. A. Olchowy and J. V. Sengers, Phys. Rev. Lett. 61:15 (1988).

    Google Scholar 

  9. G. A. Olchowy and J. V. Sengers, Int. J. Thermophys. 10:417 (1989).

    Google Scholar 

  10. H. Nabizadeh and F. Mayinger, High Temp. High Press. 24:221 (1992).

    Google Scholar 

  11. M. Takahashi, C. Yokoyama, and S. Takahashi, Proc. High Press. Conf. (30) (Sendai, Japan, 1989), p. 372.

  12. D. C. Dowdell and G. P. Matthews, J. Phys. Chem. Ref. Data (to be published).

  13. G. Ya. Ruvinskii, G. K. Lavrenchenko, and S. V. Iljushenko, Kholod. Tekh. 20 (1990); translated in G. K. Lavrenchenko, G. Ya. Ruvinskii, S. V. Iljushenko' and V. V. Kanaev, Int. J. Refrig. 15:1 (1992).

  14. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 14:33 (1993).

    Google Scholar 

  15. E. Bich, J. Millat, and E. Vogel, Wiss. Z. Wilh.-Pieck-Vniv. Rostock 36:5 (1987).

    Google Scholar 

  16. M. Ross, J. P. M. Trusler, W. A. Wakeham, and M. Zalaf, Proc. Meet. Int. Inst. Refrig. Comm. B1 Tel-Aviv 1:89 (1990).

    Google Scholar 

  17. U. Gross, Y. W. Song, and E. Hahne, Int. J. Thermophys. 13:957 (1992).

    Google Scholar 

  18. B. Taxis and K. Stephan, Int. J. Refrig. (to be published).

  19. I. R. Shankland, R. S. Basu, and D. P. Wilson, Proc. Meet. Int. Inst. Refrig. Comm. B1, B2, E1, E2, Purdue 2:305 (1988).

    Google Scholar 

  20. Y. Tanaka, M. Nakata, and T. Makita, Int. J. Thermophys. 12:949 (1991).

    Google Scholar 

  21. R. Yamamoto, S. Matsuo, and Y. Tanaka, Int. J. Thermophys. 14:79 (1993).

    Google Scholar 

  22. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 14:33 (1993).

    Google Scholar 

  23. T. Okubo, T. Hasuo, and A. Nagashima, Int. J. Thermophys. 13:931 (1992).

    Google Scholar 

  24. S. Tang, G. J. Jin, and J. V. Sengers, Int. J. Thermophys. 12:515 (1991).

    Google Scholar 

  25. A. Kumagai and S. Takahashi, Int. J. Thermophys. 12:105 (1991).

    Google Scholar 

  26. D. E. Diller, A. S. Aragon, and A. Laesecke, Fluid Phase Equil. (in press).

  27. D. Ripple, Rev. Sci. Instrum. 63:3153 (1992); D. Ripple and O. Matar, J. Chem. Eng. Data (in press).

    Google Scholar 

  28. B. Kruppa and J. Straub, Fluid Phase Equil. 80:305 (1992).

    Google Scholar 

  29. M. Schmitt, Diplomarbeit (Inst. Techn. Thermodyn. Therm. Verfahrenst., University of Stuttgart, 1990).

  30. J. Yata, Ch. Kawashima, M. Hori, and T. Minamiyama, Proc. Asian Thermophys. Prop. Conf. (2) (1989), p. 201.

  31. Y. Ueno, M. Sekikawa, Y. Nagasaka, and A. Nagashima, Proc. Jap. Symp. Thermophys. Prop. (11) (1990), p. 123.

  32. C. M. B. P. Oliveira, M. Papadaki, and W. A. Wakeham, Proc. Asian Thermophys. Prop. Conf. (3) (1992), p. 32.

  33. A. Leipertz and K. Kraft, private communication (1992).

  34. R. Heide and H. Lippold, Proc. Meet. Int. Inst. Refrig. Comm. B2, E2, D1, D2/3, Dresden 4:237 (1990).

    Google Scholar 

  35. Y. Ueno, Y. Nagasaka, and A. Nagashima, Proc. Jap. Symp. Thermophys. Prop. (12) (1991), p. 225.

  36. M. Papadaki, M. Schmitt, A. Seitz, K. Stephan, B. Taxis, and W. A. Wakeham, Int. J. Thermophys. 14:173 (1993).

    Google Scholar 

  37. M. J. Assael and E. Karagiannidis, Int. J. Thermophys. 14:183 (1993).

    Google Scholar 

  38. M. L. Huber and M. O. McLinden, Proc. 1992 International Refrigeration Conference. Purdue University, U.S.A., July 14–17, 1992, Vol. II, p. 453.

    Google Scholar 

  39. R. L. Rusby, J. Chem. Thermodyn. 23:1153 (1991).

    Google Scholar 

  40. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).

    Google Scholar 

  41. C.-C. Piao, H. Sato, and K. Watanabe, ASHRAE Trans. 96 (Part 1):132 (1990).

    Google Scholar 

  42. L. A. Weber, Int. J. Thermophys. 10:617 (1989).

    Google Scholar 

  43. R. S. Basu and D. P. Wilson, Int. J. Thermophys. 10:591 (1989).

    Google Scholar 

  44. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 24:413 (1992).

    Google Scholar 

  45. H. Kubota, T. Yamashita, Y. Tanaka, and T. Makita, Int. J. Thermophys. 10:629 (1989).

    Google Scholar 

  46. G. Morrison and D. K. Ward, Fluid Phase Equil. 62:65 (1991).

    Google Scholar 

  47. Y. Kabata, S. Tanikawa, M. Uematsu, and K. Watanabe, Int. J. Thermophys. 10:605 (1989).

    Google Scholar 

  48. Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:225 (1990).

    Google Scholar 

  49. H. J. R. Guedes and J. A. Zollweg, Int. J. Refrig. 15:381 (1992).

    Google Scholar 

  50. A. Saitoh, S. Nakagawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:107 (1990).

    Google Scholar 

  51. H. C. Burstyn, J. V. Sengers, J. K. Bhattacharjee, and R. A. Ferrell, Phys. Rev. A 28:1567 (1983).

    Google Scholar 

  52. R. F. Berg and M. R. Moldover, Phys. Rev. A 42:7183 (1990).

    Google Scholar 

  53. J. C. Nieuwoudt and J. V. Sengers, J. Chem. Phys. 90:457 (1989).

    Google Scholar 

  54. R. Mostert, H. R. van den Berg, P. S. van der Gulik, and J. V. Sengers, J. Chem. Phys. 92:5454 (1990).

    Google Scholar 

  55. J. Luettmer-Strathmann and J. V. Sengers, Proceedings, Workshop on the Thermophysical Properties of Environmentally Acceptable Refrigerants, Ericeira, Portugal, 1992 (submitted).

    Google Scholar 

  56. R. A. Perkins, D. G. Friend, H. M. Roder, and C. A. Nieto de Castro, Int. J. Thermophys. 12:965 (1991).

    Google Scholar 

  57. R. A. Perkins, H. M. Roder, and D. G. Friend, Physica A 173:332 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Joseph Kestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, R., Luettmer-Strathmann, J., Sengers, J.V. et al. Transport properties of 1,1,1,2-tetrafluoroethane (R134a). Int J Thermophys 14, 951–988 (1993). https://doi.org/10.1007/BF00502117

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502117

Key words

Navigation