Skip to main content
Log in

Compensatory neoplasia: Chronic erythrocytosis and neuroblastic tumors

  • Published:
Theoretical Medicine Aims and scope Submit manuscript

Abstract

There are a large number of exogenous biological and chemical substances with known neoplastic or carcinogenic potential. However, it has also been postulated that external stimuli can influence the body's internal milieu, and thereby induce compensatory excessive growth of cells in the form of hyperplasia or neoplasia. In a recent study, we observed a strong association between chronic hypoxic states and the occurrence of peripheral neuroblastic tumors, a relatively uncommon group of neural neoplasms. In this report we review those findings and formulate an hypothesis to explain why conditions which lead to chronic erythrocytosis may also cause compensatory neoplasia of neural tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernard, C.: Second Lecture, ‘The three forms of life’, In: Lectures on the Phenomena of Life Common to Animals and Plants, Charles C. Thomas, Springfield, 1974, pp. 46–91.

    Google Scholar 

  2. Seemayer, T. A., Thelmo, W. L., Bolande, R. P., and Wiglesworth, F. W.: ‘Peripheral neuroectodermal tumors’, Perspect. Pediatr. Pathol. 2 (1975), 151–172.

    Google Scholar 

  3. Kissel, P., André, J. M., and Jacquier, A.: ‘Von Recklinghausen's neurofibromatosis: Phakomatosis and neurocristopathy’, in The Neurocristopathies, Masson Publishing U.S.A., Inc., New York, 1981, pp. 223–232.

    Google Scholar 

  4. Christoferson, L. A., Gustafson, M. P., and Petersen, A. G.: ‘Von Hippel-Lindau's disease’, JAMA 178 (1961), 280–282.

    Google Scholar 

  5. Carney, J. A., Sizemore, G. W., and Sheps, S. G.: ‘Adrenal medullary disease in multiple endocrine neoplasia, type 2. Pheochromocytoma and its precursors’, Am. J. Clin. Pathol. 66 (1976), 279–290.

    Google Scholar 

  6. Thorling, E. B.: ‘Paraneoplastic erythrocytosis and inappropriate erythropoietin production. A review’, Scand. J. Haematol. Suppl 17, (1972) 1–166.

    Google Scholar 

  7. Shanklin, D. R. and Sotelo-Avila, C.: ‘In situ tumors in fetuses, newborns and young infants’, Biol. Neonat. 14, (1969) 286–316.

    Google Scholar 

  8. Guin, G. H., Gilbert, E. F., and Jones, B.: ‘Incidental neuroblastoma in infants’, Am. J. Clin. Pathol. 51, (1969) 126–136.

    Google Scholar 

  9. Miller, R. W., Fraumeni, J. F., Jr, and Hill, J. A.: ‘Neuroblastoma: Epidemiologic approach to its origin’, Am. J. Dis. Child. 115, (1968) 253–261.

    Google Scholar 

  10. Reisman, M., Goldenberg, E. D., and Gordon, J.: ‘Congenital heart disease and neuroblastoma’, Am. J. Dis. Child. 111, (1966) 308–310.

    Google Scholar 

  11. Reynolds, J. L. and Gilchrist, T. F.: ‘Congenital heart disease and pheochromocytoma’, Am. J. Dis. Child. 112, (1966) 251–255.

    Google Scholar 

  12. Folger, G. M., Jr, Roberts, W. C., Mehrizi, A., Shah, K. D., Glancy, D. L., Carpenter, C. C. J., and Esterly, J. R.: ‘Cyanotic malformations of the heart with pheochromocytoma. A report of five cases’, Circulation 29, (1964) 750–757.

    Google Scholar 

  13. Sy, W. M. and Edmonson, J. H.: ‘The developmental defects associated with neuroblastoma: Etiologic implications’, Cancer 22, (1968) 234–238.

    Google Scholar 

  14. de la Monte, S. M., Hutchins, G. M., and Moore, G. W.: ‘Peripheral neuroblastic tumors and congenital heart disease: Role of hypoxic states in tumor induction’, Am. J. Pediatr. Hematol. Oncol. (in press).

  15. Gordon, A. S.: ‘Erythropoietin’, Vitam. Horm. 31, (1973) 105–174.

    Google Scholar 

  16. Gordon, A. S., Cooper, G. W., and Zanjani, E. D.: ‘The kidney and erythropoiesis’, Semin Hematol. 4, (1967) 337–358.

    Google Scholar 

  17. Fisher, J. W.: ‘Erythropoietin: Pharmacology, biogenesis and control of production’, Pharmacol. Rev. 24, (1971) 459–508.

    Google Scholar 

  18. Graber, S. E., and Krantz, S. B.: ‘Erythropoietin and the control of red cell production’, Annu. Rev. Med. 29, (1978) 51–66.

    Google Scholar 

  19. Metcalf, D.: ‘Hemopoietic colonies: In vitro cloning of normal and leukemic cells’, Recent Results Cancer Res. 61, (1977) 160–169.

    Google Scholar 

  20. Spivak, J. L., and Graber, S. E.: ‘Erythropoietin and the regulation of erythropoiesis’, Johns Hopkins Med. J. 146, (1980) 311–320.

    Google Scholar 

  21. Lange, R. D. and McDonald, T. P.: ‘Immunochemical studies of erythropoietin (ESF) and erythrogenin (REF)’, Acta Univ. Carol. Med. Suppl 2, (1971) 114–126.

    Google Scholar 

  22. Fagg, B.: ‘Is erythropoietin the only factor which regulates late erythroid differentiation?’, Nature 289, (1981) 184–186.

    Google Scholar 

  23. Fisher, J. W.: ‘Extrarenal erythropoietin production’, J. Lab. Clin. Med. 93, (1979) 695–699.

    Google Scholar 

  24. Beynon, G.: ‘The influence of the autonomic nervous system in the control of erythropoietin secretion in the hypoxic rat’, J. Physiol. 266, (1977) 347–360.

    Google Scholar 

  25. Faura, J., Ramos, J., Reynafarje, C., English, E., Finne, P., and Finch, C. A.: ‘Effect of altitude on erythropoiesis’, Blood 33, (1969) 668–676.

    Google Scholar 

  26. Cohen, R. A., Miller, M. E., Garcia, J. F., Moccia, G., and Cronkite, E. P.: ‘Regulatory mechanism of erythropoietin production: Effects of hypoxemia and hypercarbia’, Exp. Hematol. 9, (1981) 513–521.

    Google Scholar 

  27. Fisher, J. W., Samuels, A., and Langston J.: ‘Effects of angiotensin, norepinephrine and renal artery constriction on erythropoietin production’, Ann. NY. Acad. Sci. 149, (1968) 308–317.

    Google Scholar 

  28. Krantz, S. B. and Jacobson, L. O.: ‘Other humoral and nonhumoral influences on erythropoiesis’, in: Erythropoietin and the Regulation of Erythropoiesis, The University of Chicago Press, Chicago, Ill., 1970, pp. 149–166.

    Google Scholar 

  29. Peschle, C., Rappaport, I. A., Sasso, G. F., Gordon, A. S., and Condorelli, M.: ‘Mechanism of growth hormone (GH) action on erythropoiesis’, Endocrinology 91, (1972) 511–517.

    Google Scholar 

  30. Fisher, J. W.: ‘Prostaglandins and kidney erythropoietin production’, Nephron 25, (1980) 53–56.

    Google Scholar 

  31. Tramezzani, J. H., Morita, E., and Chiocchio, S. R.: ‘The carotid body as a neuroendocrine organ involved in control of erythropoiesis’, Proc. Natl. Acad. Sci. 68, (1971) 52–55.

    Google Scholar 

  32. Erslev, A. J., Caro, J., Miller, O., and Silver, R.: ‘Plasma erythropoietin in health and disease’, Ann. Clin. Lab. Sci. 10, (1980) 250–257.

    Google Scholar 

  33. Krantz, S. B., and Jacobson, L. O.: ‘Metabolism of erythropoietin’, in Erythropoietin and the Regulation of Erythropoiesis, The University of Chicago Press, Chicago, Ill., 1970, pp. 56–64.

    Google Scholar 

  34. Adamson, J. W., Alexanian, R., Martinez, C., and Finch, C. A.: ‘Erythropoietin excretion in normal man’, Blood 28, (1966) 354–364.

    Google Scholar 

  35. Krantz, S. B. and Jacobson, L. O.: ‘Pathological regulation of erythropoiesis’, in Erythropoietin and the Regulation of Erythropoiesis, The University of Chicago Press, Chicago, Ill., 1970, pp. 176–195.

    Google Scholar 

  36. Fried, W., Johnson, C., and Heller, P.: ‘Observations on regulation of erythropoiesis during prolonged periods of hypoxia’, Blood 36, (1970) 606–616.

    Google Scholar 

  37. Miller, M. E., Rorth, M., Parving H. H., Howard, D., Reddington, I., Valeri, C. R., and Stohlman, F., Jr: ‘pH effect on erythropoietin response to hypoxia’, N. Engl. J. Med. 288, (1973) 706–710.

    Google Scholar 

  38. Feldman, S., Rachmilewitz, E. A., and Izak, G.: ‘The effect of central nervous system stimulation on erythropoiesis in rats with chronically implanted electrodes’, J. Lab. Clin. Med. 67, (1966) 713–725.

    Google Scholar 

  39. Medado, P., Izak, G., and Feldman, S.: ‘The effect of electrical stimulation of the central nervous system on erythropoiesis in the rat. II. Localization of a specific brain structure capable of enhancing red cell production’, J. Lab. Clin. Med. 69, (1967) 776–786.

    Google Scholar 

  40. Crafts, R. C., and Meineke, H. A.: ‘The anemia of hypophysectomized animals’, Ann. NY. Acad. Sci. 77, (1959) 501–517.

    Google Scholar 

  41. Daughaday, W. D.: ‘The Adenohypophysis’, in Textbook of Endocrinology, Fifth edition, Williams, R. H., (ed.) Chapter 2, W. B. Saunders Co., Philadelphia, 1974, pp. 31–79.

    Google Scholar 

  42. Contopoulos, A. N., Ellis, S., Simpson, M. E., Lawrence, J. H., and Evans, H. M.: ‘Production of polycythemia in hypophysectomized rats by the pituitary erythropoietic factor’, Endocrinology 55, (1954) 808–812.

    Google Scholar 

  43. Fruhman, G. J., Gerstner, R., and Gordon, A. S.: ‘Effects of growth hormone upon erythropoiesis in the hypophysectomized rat’, Proc. Soc. Exp. Biol. Med. 85, (1954) 93–96.

    Google Scholar 

  44. Lehninger, A. L.: Biochemistry. The Molecular Basis of Cell Structure and Function, 2nd Edition, Worth Publishers, Inc. New York, 1978, pp. 189–195.

    Google Scholar 

  45. Adamson, J. W.: ‘The erythropoietin hematocrit relationship in normal and polycythemic man: Implications of marrow regulation’, Blood 32, (1968) 597–609.

    Google Scholar 

  46. Jindal, S. K., Gupta, G., Mohanty, D., Das, K. C., Bidwai, P. S., and Wahi, P. L.: ‘Study of erythropoiesis, erythropoietin and haematological adjustments in congenital cyanotic heart disease’, Indian J. Med. Res. 67, (1978) 1019–1028.

    Google Scholar 

  47. Waldmann, T. A., Levin, E. H., and Baldwin, M.: ‘The association of polycythemia with a cerebellar hemangioblastoma. The production of an erythropoiesis stimulating factor by the tumor’, Am. J. Med. 31 (1961) 318–324.

    Google Scholar 

  48. Morse, E. E.: ‘Consequences of erythropoietin production by neoplasms’, Ann. Clin. Lab. Sci. 9, (1979) 116–120.

    Google Scholar 

  49. Bradley, J. E., Young, J. D., Jr., and Lentz, G.: ‘Polycythemia secondary to pheochromocytoma’, J. Urol. 86, (1961) 1–6.

    Google Scholar 

  50. Gordon, A. S., Zanjani, E. D., and Zalusky, R.: ‘A possible mechanism for the erythrocytosis associated with hepatocellular carcinoma in man’, Blood 35, (1970) 151–157.

    Google Scholar 

  51. Carpenter, G., Schwartz, H., and Walker, A. E.: ‘Neurogenic polycythemia’, Ann. Intern. Med. 49, (1943) 470–481.

    Google Scholar 

  52. Rosse, W. F., Berry, R. J., and Waldmann, T. A.: ‘Some molecular characteristics of erythropoietin from different sources determined by inactivation by ionizing radiation’, J. Clin. Invest. 42, (1963) 124–129.

    Google Scholar 

  53. Nixon, R. K., O'Rourke, W., Rupe, C. E., and Korst, D. R.: ‘Nephrogenic polycythemia’, Arch. Intern. Med. 106, (1960) 797–802.

    Google Scholar 

  54. Rosse, W. F., and Waldmann, T. A.: ‘A comparison of some physical and chemical properties of erythropoiesis-stimulating factors from different sources’, Blood 24, (1964) 739–749.

    Google Scholar 

  55. Zanjani, E. D., Zalusky, R., and Wasserman, L. P.: ‘Erythropoietin (Ep)-releasing activity of serum from patients with polycythemia vera (PV) and tumor-associated erythrocytosis’, (Abstract), Clin. Res. 20, (1971) 878.

    Google Scholar 

  56. Raff, M. C., Abney, E., Brockes, J. P., and Hornby-Smith, A.: ‘Schwann cell growth factors’, Cell 15, (1978) 813–822.

    Google Scholar 

  57. Zamenhof, S., Mosley, J., and Schuller, E.: ‘Stimulation of the proliferation of cortical neurons by prenatal treatment with growth hormone’, Science 152 (1966) 1396–1397.

    Google Scholar 

  58. Sara, V. R., Lazarus, L., Stuart, M. C., and King, T.: ‘Fetal brain growth: Selective action by growth hormone’, Science 186, (1974) 446–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address correspondence and reprint requests to Professor Grover M. Hutchins, M.D., Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, 21205, U.S.A.

Supported by NIH Grants LM-03651 from the National Library of Medicine and HL-22963 from the National Heart, Lung and Blood Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Monte, S.M., Hutchins, G.M. & Moore, G.W. Compensatory neoplasia: Chronic erythrocytosis and neuroblastic tumors. Theor Med Bioeth 5, 279–291 (1984). https://doi.org/10.1007/BF00489476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00489476

Keywords

Navigation