Skip to main content
Log in

Photosynthesis in lichen populations from different altitudes in Swedish lapland

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

Carbon dioxide assimilation was measured in situ and in a laboratory experiment in two lichen species from two altitudes near the tree-line at Abisko, northern Sweden, Cetraria nivalis and Nephroma arcticum. The altitudinal and horizontal differences between the sites were 850 m and 2,000 m, respectively. The results showed two ecophysiological responses in each species, one “alpine” and one “forest” response. It is hypothesized that these differences are mainly due to an ccotypic differentiation of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadjian V (1966) Artificial reestablishment of the lichen Cladonia cristatella. Science 151:199–200

    Google Scholar 

  • Ahmadjian V (1970a) The lichen symbiosis: its origin and evolution. Evol Biol 4:163–184

    Google Scholar 

  • Ahmadjian V (1970b) Adaptation of Antarctic terrestrial plants. In: Holdgate MW (ed). Antarctic ecology, pp 801–811

  • Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, New York London, pp 215–247

    Google Scholar 

  • Blum OB (1973) Water relations. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York London, pp 381–399

    Google Scholar 

  • Brodo JM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York London, pp 401–441

    Google Scholar 

  • Dahl E (1956) Rondane. Mountain vegetation in South Norway and its relation to the environment. Skr Nor Vidensk-Akad, Oslo 3:374

    Google Scholar 

  • Degelius G (1964) Biological studies of the epiphytic vegetation on twigs of Fraxinus excelsior. Acta Horti Gothob 27:55

    Google Scholar 

  • Degelius G (1978) Further studies on the epiphytic vegetation on twigs. Botanica Gothoburgensia 7, Acta Universitatis Gothoburgensis, 55 pp

  • Farrar JF (1973) Lichen physiology: progress and pitfalls. In: Ferry BW, Baddeley MS, Hawksworth OL (eds) Air pollution and lichens. Athlone Press, London, pp 238–282

    Google Scholar 

  • Farrar JF (1976) Ecological physiology of the lichen Hypogymnia physodes. 2. Effects of wetting and drying cycles and the concept of ‘physiological buffering’. New Phytol 77:105–113

    Google Scholar 

  • Gauslaa Y (1984) Infrared and visible reflectance in different lichen species and its ecological significance. Holarct Ecol 7:13–22

    Google Scholar 

  • Hawksworth DL, Hill DJ (1984) The lichen-forming fungi. Blackie, Glasgow London, 158 pp

    Google Scholar 

  • Johansson L-G, Linder S (1980) Photosynthesis of Sphagnum in different microhabitats on a subarctic mire. In: Sonesson M (ed) Ecology of a subarctic mire. Ecol Bull 30:191–207

    Google Scholar 

  • Kallio P, Heinonen S (1971) Influence of short-term low temperature on net photosynthesis in some subarctic lichens. Rep Kevo Subartic Res Stat 8:63–72

    Google Scholar 

  • Kallio P, Kärenlampi L (1975) Photosynthesis in mosses and lichens. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 393–423

    Google Scholar 

  • Kappen L, Lange OL (1970) Kälteresistanz von Flechten aus verschiedenen Klimagebieten. Ber Dtsch Bot Ges, Neue Folge 4:61–65

    Google Scholar 

  • Kappen K, Lange OL (1972) Die Kälteresistanz einiger Makrolichenen. Flora 161:1–29

    Google Scholar 

  • Karlsson S, Sveinbjörnsson B (1981) Methodological comparison of photosynthetic rates measured by the 14CO2 technique or infra-red gas analysis. Photosynthetica 15:447–452

    Google Scholar 

  • Krog H, Oesthagen H, Toensberg T (1980) Lavflora. Norske busk og bladlav. Universitetsforlaget Oslo, 312 pp

    Google Scholar 

  • Lange OL (1953) Hitze und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140:39–97

    Google Scholar 

  • Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. 1. CO2-Gaswechsel von Ramalina maciformis (Del.), Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158:324–359

    Google Scholar 

  • Larson DW (1984) Habitat overlap/niche segregation in two Umbilicaria lichens: a possible mechanism. Oecologia (Berlin) 62:118–125

    Google Scholar 

  • Lid J (1974) Norsk og svensk flora. 2 uppl. Det Norske Samlaget, Oslo, 808 pp

  • Macfarlane JD, Kershaw KA, Webber MR (1983) Physiological environmental interactions in lichens. 17. Phenotypic differences in the seasonal pattern of net photosynthesis in Cladonia rangiferina. New Phytol 94:217–233

    Google Scholar 

  • Moser TJ, Nash III TH, Link SO (1981) Diurnal gross photosynthetic patterns and potential seasonal CO2 assimilation in Cladonia stellaris and Cladonia rangiferina. Can J Bot 61:642–655

    Google Scholar 

  • Nyholm E (1954–69) Illustrated moss flora of Fennoskandia. 1–6 Natural Science Research Council, Stockholm

    Google Scholar 

  • Scholander PF, Flagg W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the arctic. J Cell Comp Physiol 42:1–56

    Google Scholar 

  • Scott GD (1973) Evolutionary aspects of symbiosis. In: Ahmadjian V, Hale MG (eds) The lichens. Academic Press, New York London, pp 581–598

    Google Scholar 

  • Sestak Z, Catsky J, Jarvis PG (1971) Plant photosynthetic production. Manual of methods. W Junk, NV Publishers, The Hague, 818 pp

    Google Scholar 

  • Shimshi D (1969) A rapid method for measuring photosynthesis with labelled carbon dioxide. J Exp Bot 20:381–401

    Google Scholar 

  • Sjörs H (1963) Amphi-atlantic zonation: nemoral to arctic. In: Löve A, Löve D (eds) North Atlantic biota and their history. Pergamon Press, Oxford, pp 109–125

    Google Scholar 

  • Snelgar WP, Brown OH, Green TGA (1980) A provisional survey of the interaction between net photosynthetic ratio, respiratory rate, and thallus water content in some New Zealand cryptogams. N Z J Bot 18:247–256

    Google Scholar 

  • Sonesson M (1969) Studies on mire vegetation in the Torneträsk area, northern Sweden. 2. Winter conditions of the poor mires. Bot Not 122:481–511

    Google Scholar 

  • Sonesson M (1970) Studies on mire vegetation in the Torneträsk area, northern Sweden. 3. Communities of the poor mires. Opera Bot 26:120

    Google Scholar 

  • Sonesson M, Lundberg B (1974) Late Quaternary forest development of the Torneträsk area, North Sweden. 1. Structure of modern forest ecosystems. Oikos 25:121–133

    Google Scholar 

  • Stocker O (1927) Physiologisch-ökologische Untersuchungen an Laubund Strauchflechten. Flora 21:334–415

    Google Scholar 

  • Sveinbjörnsson B (1983) Bloclimate and its effect on the carbon dioxide flux of mountain birch (Betula pubescens Ehrh.) at its altitudinal tree-line in the Torneträsk area, northern Sweden. Nordicana (Quebec) 47:111–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonesson, M. Photosynthesis in lichen populations from different altitudes in Swedish lapland. Polar Biol 5, 113–124 (1986). https://doi.org/10.1007/BF00443383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00443383

Keywords

Navigation