Skip to main content
Log in

Dopamine and mania: Behavioral and biochemical effects of the dopamine receptor blocker pimozide

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Although recent data suggest that pimozide has effects at other neurotransmitter receptor sites, it is one of the more specific neuroleptics in its effects on dopamine receptors. We report that in manic patients pimozide produces substantial clinical improvement with a magnitude and time course similar to that observed with the more routinely used phenothiazines chlorpromazine and thioridazine. Pimozide did not significantly increase probenecid-induced accumulations of the dopamine metabolite homovanillic acid (HVA) compared to pretreatment values. Higher HVA values were observed in manic than in nonmanic patients, however. These clinical and biochemical data add to a growing body of indirect evidence that a dopaminergic alteration may be associated with some components of the manic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity of turnover of dopamine of noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970)

    Google Scholar 

  • Baudry, M., Martres, M. P., Schwartz, J. C.: In vivo binding of 3H-pimozide in mouse striatum: Effects of dopamine agonists and antagonists. Life Sci. 21, 1163–1170 (1977a)

    Google Scholar 

  • Baudry, M., Costentin, J., Marcais, H., Martres, M. P., Protais, P., Schwartz, J. C.: Decreased responsiveness to low doses of apomorphine after dopamine agonists and the possible involvement of hyposensitivity of dopamine “autoreceptors”. Neurosci. Letters 4, 203–207 (1977b)

    Google Scholar 

  • Blumberg, J. B., Taylor, R. E., Sulser, F.: Blockade by pimozide of a noradrenaline sensitive adenylate cyclase in the limbic forebrain: Possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics. J. Pharm. Pharmacol. 27, 125–128 (1975)

    Google Scholar 

  • Bobon, D. P., Plomteux, G., Heusghem, C., Bobon, J.: Clinical toxicology and efficacy of pimozide. Int. Pharmacopsychiatry 4, 194–203 (1970)

    Google Scholar 

  • Bowers, M. B.: Clinical indices of dopaminergic function. In: Catecholamines: Basic and clinical frontiers, p. 138

  • Bowers, M. B., Rozitis, A.: Brain homovanillic acid: Regional changes over time with antipsychotic drugs. Eur. J. Pharmacol. 39, 109–115 (1976)

    Google Scholar 

  • Bunney, W. E., Jr., Hamburg, D. A.: Methods for reliable longitudinal observation of behavior. Arch. Gen. Psychiatry 9, 280–294 (1963)

    Google Scholar 

  • Bunney, W. E., Jr., Brodie, H. K. H., Murphy, D. L., Goodwin, F. K.: Studies of alpha-methyl-para-tyrosine, l-dopa, and l-tryptophan in depression and mania. Am. J. Psychiatry 127, 872–881 (1971)

    Google Scholar 

  • Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors, E. Usdin, W. E. Bunney, Jr., eds., pp. 49–87. New York: Marcel Dekker 1975

    Google Scholar 

  • Carlsson, A.: Antipsychotic drugs, neurotransmitters, and schizophrenia. Am. J. Psychiatry 135, 164–173 (1978)

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and norepinephrine in mouse brain. Acta Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)

    Google Scholar 

  • Claghorn, J. L.: A double-blind comparison of pimozide versus trifluoperozine in schizophrenic outpatients. Curr. Ther. Res. 16, 1005–1009 (1974)

    Google Scholar 

  • Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G., Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 71, 1113–1117 (1974)

    Google Scholar 

  • Corrodi, H., Fuxe, K., Schou, M.: The effect of prolonged lithium administration on cerebral monoamine neurons in the rat. Life Sci. 8, 643–651 (1969)

    Google Scholar 

  • Corsini, G. U., Del Zompo, M., Manconi, S., Cianchetti, C., Mangoni, A., Gessa, G. L.: Sedative, hypnotic, and antipsychotic effects of low doses of apomorphine in man. In: Nonstriatal dopaminergic neurons: Advances biochemical psychopharmacology, vol. 16, E. Costa, G. L. Gessa, eds., pp. 645–648. New York: Raven 1977

    Google Scholar 

  • Costall, B., Naylor, R. J.: Mesolimbic and extrapyramidal sites for the mediation of stereotyped behavior patterns and hyperactivity by amphetamine and apomorphine in the rat. In: Cocaine and other stimulants: Advances in behavioral biology, vol. 21, E. H. Ellinwood, M. M. Kilbey, eds., pp. 47–76. New York: Plenum 1977

    Google Scholar 

  • Creese, I., Iversen, S. D.: The role of forebrain dopamine systems in amphetamine induced streotyped behavior in the rat. Psychopharmacologia 39, 345–357 (1974)

    Google Scholar 

  • Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1967a)

    Google Scholar 

  • Creese, I., Feinberg, A. P., Snyder, S. H.: Butyrophenone influences on the opiate receptor. Eur. J. Pharmacol. 36, 231–236 (1976b)

    Google Scholar 

  • Creese, I., Prosser, T., Snyder, S. H.: Dopamine receptor binding: Specificity, localization and regulation by ions and guanyl nucleotides. Life Sci. 23, 495–500 (1978)

    Google Scholar 

  • Denef, C., Follebouckt, J.-J.: Differential effects of dopamine antagonists on prolactin secretion from cultured rat pituitary cells. Life Sci. 23, 413–436 (1978)

    Google Scholar 

  • Denijs, E. L., Vereecken, J. L. T. M.: Pimozide (Oral, R 6238) in residual schizophrenia. A clinical evaluation with long-term double-blind follow-up. Psychiatr. Neurol. Neurochir. 76, 47–59 (1973)

    Google Scholar 

  • Ettenberg, A., Milner, P. M.: Effects of dopamine supersensitivity on lateral hypothalamic self-stimulation in rats. Pharmacol. Biochem. Behav. 7, 507–514 (1977)

    Google Scholar 

  • Friedman, E., Gershon, S.: Effects of lithium on brain dopamine. Nature 243, 520–521 (1973)

    Google Scholar 

  • Gallager, D. W., Aghajanian, G. K.: Effect of antipsychotic drugs on the firing of dorsal raphe cells. Role of adrenergic system. Eur. J. Pharmacol. 39, 341–355 (1976)

    Google Scholar 

  • Gallager, D. W., Pert, A., Bunney, W. E., Jr.: Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273, 309–312 (1978)

    Google Scholar 

  • Gerlach, J., Thorsen, K., Fog, R.: Extra-pyramidal reactions and amine metabolites in crebrospinal fluid during haloperidol and clozapine treatment of schizophrenic patients. Psychopharmacology 40, 341–350 (1975)

    Google Scholar 

  • Gerner, R. H., Post, R. M., Bunney, W. E., Jr.: A dopaminergic mechanism in mania. Am. J. Psychiatry 133, 1177–1180 (1976)

    Google Scholar 

  • Gianutsos, G., Thornburg, J. E., Moore, K. E.: Differential actions of dopamine agonists and antagonists on the gamma-butyrolactone-induced increase in mouse brain dopamine. Psychopharmacology 50, 225–229 (1976)

    Google Scholar 

  • Glowinski, J.: Effects of neuroleptics on the nigroneostriatal and mesocortical dopaminergic systems. In: Biology of the major psychosis, D. X. Freedman, ed., pp. 233–246. New York: Raven 1975

    Google Scholar 

  • Goldberg, J. B., Kurland, A. A.: Pimozide in the treatment of behavioral disorders of hospitalized adolescents. J. Clin. Pharmacol. 14, 134–139 (1974)

    Google Scholar 

  • Goodwin, F. K., Brodie, H. K. H., Murphy, D. L., Bunney, W. E., Jr.: l-Dopa, catecholamines, and behavior: A clinical and biochemical study in depressed patients. Biol. Psychiatry 2, 341–366 (1970)

    Google Scholar 

  • Goodwin, F. K., Post, R. M., Dunner, D. L., Gordon, E. K.: Cerebrospinal fluid amine metabolites in affective illness: The probenecid technique. Am J. Psychiatry 130, 73–79 (1973)

    Google Scholar 

  • Gordon, E. K., Oliver, J.: 3-Methoxy-4-hydroxyphenylethylene glycol in human cerebrospinal fluid. Clin. Chim. Acta 35, 145–150 (1971)

    Google Scholar 

  • Halaris, A. E., Freedman, D. X.: Psychotropic drugs and dopamine uptake inhibition. In: Biology of the major psychoses, D. X. Freedman, ed., pp. 247–258. New York: Raven 1975

    Google Scholar 

  • Ho, A. K. S., Loh, H. H., Craves, F., Hitzeman, R. J., Gershon, S.: The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamine in brain regions of rats. Eur. J. Pharmacol. 10, 72–78 (1970)

    Google Scholar 

  • Horn, A. S., Phillipson, O. T.: A noradrenaline sensitive adenylate cyclase in the rat limbic forebrain: Preparation, properties and the effects of agonists, adrenolytics and neuroleptic drugs. Eur. J. Pharmacol. 37, 1–11 (1976)

    Google Scholar 

  • Hyttel, J.: Effect of neuroleptics on the disappearance rate of 14C-labelled catecholamines formed from 14C-tyrosine in mouse brain. J. Pharm. Pharmacol. 26, 588–596 (1974)

    Google Scholar 

  • Jacobs, B. L.: Effect of two dopamine receptor blockers on a serotonin-mediated behavioral syndrome in rats. Eur. J. Pharmacol. 27, 363–366 (1974)

    Google Scholar 

  • Jimerson, D. C., Post, R. M., Skyler, J. Bunney, W. E., Jr.: Prolactin in cerebrospinal fluid and dopamine function in man. J. Pharm. Pharmacol. 28, 845–847 (1976)

    Google Scholar 

  • Kebabian, J. W.: Multiple classes of dopamine receptors in mammalian central nervous system: The involvement of dopamine-sensitive adenylate cyclase. Life Sci. 23, 479–484 (1978)

    Google Scholar 

  • Kelly, P. H., Iversen, S. D.: Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: Abolition of psychostimulant-induced locomotor activity in rats. Eur. J. Pharmacol. 40, 45–56 (1975)

    Google Scholar 

  • Kolivakis, T., Hassan, A., Kingstone E: A double-blind comparison of pimozide and chlorpromazine in the maintenance care of chronic schizophrenic outpatients. Curr. Ther. Res. 16, 998–1004 (1974)

    Google Scholar 

  • Ljungberg, T., Ungerstedt, U.: Different behavioral patterns induced by apomorphine: Evidence that the method of administration determines the behavioral response to the drug. Eur. J. Pharmacol. 46, 41–50 (1977)

    Google Scholar 

  • Ljungberg, T., Ungerstedt, U.: Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: Evidence for two different mechanisms of action. Psychopharmacology 56, 239–347 (1978)

    Google Scholar 

  • Modigh, K.: Long-term effects of electroconvulsive shock therapy on synthesis turnover and uptake of brain monoamines. Psychopharmacology 49, 179–185 (1976)

    Google Scholar 

  • Molander, L., Randrup, A.: Effects of thymoleptics on behavior associated with changes in brain dopamine. Potentiation of dopa-induced gnawing of mice. Psychopharmacologia 45, 261–265 (1976a)

    Google Scholar 

  • Molander, L., Randrup, A.: Effects of thymoleptics on behavior associated with changes in brain dopamine. Modification and potentiation of apomorphine-induced stimulation of mice. Psychopharmacology 49, 139–144 (1976b)

    Google Scholar 

  • Murphy, D. L.: l-Dopa, behavioral activation, and psychopathology. In: Neurotransmitters, I. J. Kopin, ed., pp. 472–493. New York: Raven 1972

    Google Scholar 

  • Murphy, D. L., Beigel, G., Weingartner, H., Bunney, W. E., Jr.: The quantitation of manic behavior. In: Psychological measurements in psychopharmacology: Modern problems in pharmacopsychiatry, vol. 7, P. Pichot, ed., pp. 203–220. Paris: Karger 1974

    Google Scholar 

  • Papeschi, R., Randrup, A.: Effect of ECT on dopaminergic and noradrenergic mechanisms. Effect on dopamine and noradrenaline concentrations and turnovers. Psychopharmacologia 35, 159–168 (1974)

    Google Scholar 

  • Pert, A., Rosenblatt, J. E., Sivit, C., Pert, C. B., Bunney, W. E., Jr.: Long-term treatment lithium prevents the development of dopamine receptor supersensitivity. Science 201, 171–173 (1978a)

    Google Scholar 

  • Pert, C. B., Pert A., Rosenblatt, J. E., Tallman, J. F., Bunney, W. E., Jr.: Catecholamine receptor stabilization: a possible mode of lithium's antimanic action. In: Catecholamines: Basic and clinical frontiers, E. Usdin, I. J. Kopin, J. Barchas, eds., pp. 583–585. New York: Pergamon Press 1978

    Google Scholar 

  • Pijnenburg, A., Honig, W., Vander-Heyden, J., Van Rossum, J.: Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur. J. Pharmacol. 35, 45–58 (1976)

    Google Scholar 

  • Post, R. M.: Cocaine psychoses: A continuum model. Am. J. Psychiatry 132, 225–231 (1975)

    Google Scholar 

  • Post, R. M.: Frontiers in affective disorder research: New pharmacological agents and new methodologies. In: Psychopharmacology: A generation of progress, M. A. Lipton, A. DiMascio, K. F. Killam, eds., pp. 1323–1335. New York: Raven 1978

    Google Scholar 

  • Post, R. M., Goodwin, F. K.: Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients. Science 190, 488–489 (1975)

    Google Scholar 

  • Post, R. M., Gerner, R. H., Carman, J. S., Bunney, W. E., Jr.: Effects of low doses of a dopamine-receptor stimulator in mania. Lancet 1976 I, 203–204

  • Post, R. M., Gerner, R. H., Carman, J. S., Gillin, J. C., Jimerson, D. C., Goodwin, F. K., Bunney, W. E., Jr.: Effects of a dopamine agonist piribedil in depressed patients: Relationship of pretreatment HVA to antidepressant response. Arch. Gen. Psychiatry 35, 609–615 (1978)

    Google Scholar 

  • Praag, H. M. van: The significance of dopamine for the mode of action of neuroleptics and the pathogenesis of schizophrenia. Br. J. Psychiatry 130, 463–474 (1977a)

    Google Scholar 

  • Praag, H. M. van: Significance of biochemical parameters in the diagnosis, treatment, and prevention of depressive disorders. Biol. Psychiatry 12, 101–131 (1977b)

    Google Scholar 

  • Praag, H. M. van, Korf, J.: Serotonin metabolism in depression: Clinical application of the probenecid test. Int. Pharmacopsychiatry 9, 35–51 (1974)

    Google Scholar 

  • Puech, A. J., Simon, P., Boissier, J. R.: Benzamides and classical neuroleptics: Comparison of their actions using six apomorphine-induced effects. Eur. J. Pharmacol. 50, 291–300 (1978)

    Google Scholar 

  • Randrup, A., Braestrup, C.: Uptake inhibition of biogenic amines by newer antidepressant drugs: Relevance to the dopamine hypothesis of depression. Psychopharmacology 53, 309–314 (1977)

    Google Scholar 

  • Randrup, A., Munkvad, I., Fog, R., Gerlach, J., Molander, L., Kjellberg, B., Scheel-Kruger, J.: Mania, depression, and brain dopamine. Curr. Dev. Psychopharmacol. 2, 205–248 (1975)

    Google Scholar 

  • Riding, J., Munro, A.: Pimozide in the treatment of monosymptomatic hypochondriacal psychosis. Acta Psychiatr. Scand. 52, 23–30 (1975)

    Google Scholar 

  • Rossum, J. M. van: Mode of action of psychomotor stimulant drugs. Int. Rev. Neurobiol. 12, 307–383 (1970)

    Google Scholar 

  • Sack, R. L., Goodwin, F. K.: Inhibition of dopamine β-hydroxylase in manic patients. Arch. Gen. Psychiatry 31, 649–654 (1974)

    Google Scholar 

  • Sawaya, M. C. B., Dolphin, A., Jenner, P., Marsden, C. D., Meldrum, B. S.: Noradrenaline-sensitive adenylate cyclase in slices of mouse limbic forebrain: Characterisation and effect of dopaminergic agonists. Biochem. Pharmacol. 26, 1877–1884 (1977)

    Google Scholar 

  • Scatton, B., Glowinski, J., Julou, L.: Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administrations of neuroleptics. Brain Res. 109, 184–189 (1976)

    Google Scholar 

  • Scatton, B., Boireau, A., Garret, C., Glowinski, J., Julou, L.: Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigrostriatal, mesolimbic and mesocortical systems. Naunyn Schmiedebergs Arch. Pharmacol. 296, 169–175 (1977)

    Google Scholar 

  • Scheel-Kruger, J., Braestrup, C., Nielson, M., Golembiowska, K., Mogilnicka, E.: Cocaine: Discussion on the role of dopamine in the biochemical mechanism of action. In: Cocaine and other stimulants: Advances in behavioral biology, vol. 21, E. H. Ellinwood, M. M. Kilbey, eds., pp. 373–407. New York: Plenum 1977

    Google Scholar 

  • Sedvall, G., Bjerkenstedt, L., Lindstrom, L., Wode-Helgodt, B.: Clinical assessment of dopamine receptor blockade. Life Sci. 23, 425–430 (1978)

    Google Scholar 

  • Sedvall, G., Fyro, B., Nyback, H., Wiesel, F. A., Wode-Helgodt, B.: Mass fragmentometric determination of homovanillic acid in lumbar cerebrospinal fluid of chizophrenic patients during treatment with antipsychotic drugs. J. Psychiatr. Res. 11, 75–80 (1974)

    Google Scholar 

  • Seeman, P., Lee, T., Chau-Wong, M., Wong, K.: Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719 (1976)

    Google Scholar 

  • Seeman, P., Tedesco, J. L., Lee, T., Chau-Wong, M., Muller, P., Bowles, J., Withaker, P. M., McManus, C., Tittler, M., Weinreich, P., Friend, W. C., Brown, G. M.: Dopamine receptors in the central nervous system. Fed. Proc. 37, 130–136 (1978)

    Google Scholar 

  • Segal, D. S., Callaghan, M., Mandell, A. J.: Alterations in behavior and catecholamine biosynthesis induced by lithium. Nature 254, 58–59 (1975)

    Google Scholar 

  • Shopsin, B., Gershon, S.: Dopamine receptor stimulation in the treatment of depression: Piribedil (ET-495). Neuropsychobiology 4, 1–14 (1978)

    Google Scholar 

  • Snyder, S. H., Creese, I., Burt, D. R.: The brain's dopamine receptor: Labeling with 3H-dopamine and 3H-haloperidol. Psychopharmacol. Commun. 1, 663–673 (1975)

    Google Scholar 

  • Snyder, S. H., Banerjee, S. P., Yamamura, H. I., Greenberg, D.: Drugs, neurotransmitters, and schizophrenia. Science 184, 1243–1254 (1974)

    Google Scholar 

  • Spitzer, R. L., Endicott, J., Robins, E.: Clinical criteria for psychiatric diagnosis and DSM-III. Am. J. Psychiatry 132, 1186–1192 (1975)

    Google Scholar 

  • Sternberg, D. E., van Kammen, D. P., Lake, R. C., Ballenger, J. C., Bunney, W. E., Jr.: Cerebrospinal fluid norepinephrine in schizophrenia. Sci. Proc. Am. Psychiatr. Assoc. 132, 344 (1979)

    Google Scholar 

  • Strombom, U.: Effects of low doses of catecholamine receptor agonists on exploration in mice. J. Neural. Transm. 37, 229–235 (1976)

    Google Scholar 

  • Sugerman, A. A.: A pilot study of pimozide in chronic schizophrenia patients. Curr. Ther. Res. 13, 706–713 (1971)

    Google Scholar 

  • Wode-Helgodt, B., Fyro, B., Gullberg, B., Sedvall, G.: Effect of chlorpromazine treatment on monoamine metabolite levels in cerebrospinal fluid of psychotic patients. Acta Psychiatr. Scand. 56, 129–142 (1977)

    Google Scholar 

  • Yamamura, H. I., Manian, A. A., Snyder, S. H.: Muscarinic cholinergic receptor binding: Influence of pimozide and chlorpromazine metabolites. Life Sci. 18, 685–692 (1976)

    Google Scholar 

  • Yaryura-Tobias, J. A., Patito, J. A., Mizrahi, J., Roger, R. V., Cappelletti, S. R.: The action of pimozide on acute psychosis. Acta Psychiatr. Belg. 74, 421–429 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Post, R.M., Jimerson, D.C., Bunney, W.E. et al. Dopamine and mania: Behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology 67, 297–305 (1980). https://doi.org/10.1007/BF00431272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00431272

Key words

Navigation