Skip to main content
Log in

Functional analysis of the promoter and first intron of the human lysyl oxidase gene

  • Research Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alterations in the synthesis and activity of lysyl oxidase occur concomitant with developmental changes in collagen and elastin deposition and with the pathogenesis of several acquired and heritable connective tissue disorders. To begin to unravel the mechanisms that control lysyloxidase gene expression, we have previously reported the complete exon-intron structure of the human lysyl oxidase gene. We have now sequenced this entire gene, including all six introns and 4 kb of DNA 5′ of exon 1. Analysis of over 13 kb of intervening sequence and 5′ flanking sequence revealed a concentration of conserved consensus sequence elements within the first intron and 1 kb immediately 5′ of exon 1. Analysis of intron 1 and the 5′ flanking domain, using recombinant plasmids containing the chloramphenicol acetyl transferase (CAT) reporter gene, identified functional DNA sequence elements within these non-coding domains responsible for inhibition and up-regulation of CAT activity in primary cultures of human skin fibroblasts, in smooth muscle cells, revertant cells derived from an osteosarcoma cell line and malignant c-Ha-ras-transformed osteosarcoma cells. DNA sequence elements within intron 1, in particular, resulted in a marked increase in CAT reporter activity in cultured fibroblasts, smooth muscle cells and osteosarcoma cells. In c-Ha-ras-transformed osteosarcoma cells, however, no such enhancer activity of intron 1 sequence was observed. Ras-transformed osteosarcoma cells exhibited reduced steady-state levels of lysyl oxidase mRNA that was primarily controlled through reduced transcription of the lysyl oxidase gene. The lack of any up-regulation of CAT activity in these ras-transformed cells by sequence elements within intron 1 suggests a complex interaction between cis-acting domains and trans-acting transcriptional factors in the 5′ promoter domain and the first intron of the lysyl oxidase gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagan HM (1986) Biology of Extracellular Matrix: Regulation of matrix accumulation (Editor: Mecham R.P.).Academic Press, Orlando, Vol 1. pp. 321–398

    Google Scholar 

  2. Kagan HM & Trackman PC (1991) Am. J. Resp. Cell Mol. Biol. 3: 206–210

    Google Scholar 

  3. Bedell-Hogan D, Trackman PC, Abrams W, Rosenbloom J & Kagan HM (1993) J. Biol. Chem., 268: 10345–10350

    Google Scholar 

  4. Trackman PC, Pratt AM, Wolanski A, Tang SS, Offner GD, Troxler RT & Kagan HM (1990) Biochemistry 30: 8282

    Google Scholar 

  5. Wu Y, Rich CB, Lincecum J, Trackman P, Kagan HM & Foster JA (1992). J. Biol. Chem. 267: 24199–24206

    Google Scholar 

  6. Hamalainen RR, Jones TA, Sheer D, Taskinen J, Pihlajaniemi T & Kivirikko K (1991) Genomics, 11: 508–516

    Google Scholar 

  7. Mariani TJ, Trackman PC, Kagan HM, Eddy RL, Shows TB, Boyd CD & Deak SB (1992) Matrix 12: 242–248

    Google Scholar 

  8. Trackman PC, Bedell-Hogan D, Tang J & Kagan HM (1992) J.Biol.Chem. 267: 8666–8671

    Google Scholar 

  9. Cronshaw AD, Fothergill-Gilmore LA & Hulmes DJ (1995) Biochem. J. 306: 279–284

    Google Scholar 

  10. Hamalainen RR, Kemppainen R, Pihlajaniemi T & Kivirikko K (1993) Genomics 17: 544–548

    Google Scholar 

  11. Boyd CD, Mariani TJ, Kim Y & Csiszar K (1995) Mol. Biol. Reports 21: 95–103

    Google Scholar 

  12. Chang YS, Svinarich DM, Yang TP & Krawetz SA (1993) Cytogenet. Cell Genet. 63: 47–49

    Google Scholar 

  13. Lossie AC, Buckwalter MS & Camper SA (1993) Mamm. Genet. 4: 177–178

    Google Scholar 

  14. Brody JS, Kagan HM &Manalo A (1979) Am. Rev. Respir. Dis. 120: 1289–1295

    Google Scholar 

  15. Quaglino D, Fornieri C, Nanney LB & Davidson JM (1993) Matrix 13: 181–190

    Google Scholar 

  16. Sommer P, Gleyzal C, Raccurt M, Delboung M, Serrar M, Joazeir P, Peyrol S, Kagan HP, Trackman PC & Grimaud JA (1993) Lab. Invest. 69: 160–170

    Google Scholar 

  17. Kagan HM (1994) Pathol. Res. and Practice 190: 910–919

    Google Scholar 

  18. Royce RM & Steinman B (1990) Pediatr. Res. 28: 137–141

    Google Scholar 

  19. Vulpe C, Levinson B, Whitney S, Packman S & Gitschier J (1993) Nat. Genet. 3: 7–13

    Google Scholar 

  20. Mercer JFB, Livingston J, Hall B, Paynter JA, Begy K, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemineiak D & Glover TW (1993) Nat. Genet. 3: 20–25

    Google Scholar 

  21. Kuivaniemi H, Korhonen RM & Kivirikko KI (1986) FEBS 195: 261–264

    Google Scholar 

  22. Kuivaniemi H (1989) Biochem. J. 230: 639–643

    Google Scholar 

  23. Gacheru S, McGee C, Uriu-Hare JY, Kosonen T, Packman S, Tinker D, Krawetz SA, Reiser K, Keen CL & Rucker RB (1993) Arch. Biochem. Biophys. 301: 325–329

    Google Scholar 

  24. Contente S, Kenyon K, Rimoldi D & Friedman RM (1990) Science 249: 796–798

    Google Scholar 

  25. Kenyon K, Contente S, Trackman PC, Tang J, Kagan HM & Friedman RM (1991) Science 253: 802

    Google Scholar 

  26. Krzyzosiak W.J., Shindo-Ocada N, Teshima H, Nakajima K & Nishimura S (1992) Proc. Nat. Acad. Sci. USA 89: 1879–4883

    Google Scholar 

  27. Shibanuma M, Moshimo J, Mhita A,Kunoki T & Nose K (1993) J. Biochem. 217: 13–19

    Google Scholar 

  28. Hajnal A, Klemenz R & Schafer R (1993) Cancer Research 53: 4670–4675

    Google Scholar 

  29. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (1994) Current protocols in molecular biology. Green and Wiley-Interscience. New York, Toronto, Singapore

    Google Scholar 

  30. Samid D & Mandler R (1989) Clinical Biotech 1: 21–26

    Google Scholar 

  31. Csiszar K, Mariani TJ, Gosin JS, Deak SB & Boyd CD (1994) Genomics, 16: 401–406

    Google Scholar 

  32. Contente S, Csiszar K, Kenyon K & Friedman RM (1993) Genomics 16: 395–400

    Google Scholar 

  33. Wingender E (1990) Crit. Rev. Eukaryotic Gene Expr. 1: 11–34

    Google Scholar 

  34. Raibaud O, Gutierez C & Schwartz M (1985) J. Bact. 161: 1201–1208

    Google Scholar 

  35. Trackman PC, Feres-Filho EJ & Choi YJ (1995) Biochim. Biophys. Acta 1360: 355–360

    Google Scholar 

  36. Boak AM, Roy R, Berk J, Taylor L, Polgar P, Goldstein RH & Kagan HM (1994) Am. J. Respir. Cell Mol. Biol 11: 751–755

    Google Scholar 

  37. Bronson RW, Calaman SD, Traish AM & Kagan HM (1987) Biochem. J. 244: 317–323

    Google Scholar 

  38. Lee TC, Zhang Y & Swartz RJ (1994) Oncogene 9: 1047–1052

    Google Scholar 

  39. Shrivastava A, Saleque S, Kalpana GY, Artandi S, Goft SP & Calame K (1993) Science 262: 1889–1892

    Google Scholar 

  40. Sherwood AL, Bottenus MR, Martzen MR & Bornstein P (1990) Gene 89: 239–244

    Google Scholar 

  41. Liska DJ, Slack JL & Bornstein P (1990) Cell Regul. 1: 487–498

    Google Scholar 

  42. Stuart GW, Searle PF & Palmiter RD (1985) Nature 317: 828–831

    Google Scholar 

  43. Palmiter R (1994) Proc. Nat. Acad. Sci. USA 91: 1219–1223

    Google Scholar 

  44. Slack JL, Parker ML, Robinson UR & Bornstein P (1992) Mol. Cell. Biol. 12: 4714–4723

    Google Scholar 

  45. Chandler LA, Ehretsmann CP & Bourgeois S. (1994) Mol. Cell Biol. 14: 3085–3093

    Google Scholar 

  46. White MA, Nicolette C, Minden A, Polverino A, Aelst L, Karin M & Wigler MH (1995) Cell 80: 533–541

    Google Scholar 

  47. Bortner DM, Langer SJ & Ostrowski MC (1993) Crit. Rev. Oncogen. 4: 137–160

    Google Scholar 

  48. Chambers A (1993) Crit. Rev. Oncogen. 4: 95–114

    Google Scholar 

  49. Westermarck J, Lohi J, Keski-Oja J & Kahari VM (1994) Cell Growth Diff. 5: 1205–1213

    Google Scholar 

  50. Santala P, Larjava H, Nissinen L, Riikonen L, Maatta A& Heino J (1994) J. Biol. Chem. 269: 1276–1283

    Google Scholar 

  51. Romans M, Villena J, Molist A, Heredia A & Bassols A (1994) Biochem. Biophys. Res. Com. 200: 925–932

    Google Scholar 

  52. Pienta KJ, Murphy BC, Getzenberg RH & Coffey DS (1991) Biochem. Biophys. Res. Comm. 179: 333–339

    Google Scholar 

  53. Roskelley CD, Desperez PY & Bissel MJ (1994) Proc. Nat. Acad. Sci. USA 91: 12378–12382

    Google Scholar 

  54. Colton T (1974) Statistics in Medicine, Little, Brown & Co., Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csiszar, K., Entersz, I., Trackman, P.C. et al. Functional analysis of the promoter and first intron of the human lysyl oxidase gene. Mol Biol Rep 23, 97–108 (1996). https://doi.org/10.1007/BF00424435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424435

Key words

Navigation