Skip to main content
Log in

Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

We present the complete 15N and 1H NMR assignment and the secondary structure of an immunoglobulin-like domain from the giant muscle protein titin. The assignment was obtained using homonuclear and 15N heteronuclear 2D and 3D experiments. The complementarity of 3D TOCSY-NOESY and 3D 15N NOESY-HSQC experiments, using WATERGATE for water suppression, allowed an efficient assignment of otherwise ambiguous cross peaks and was helpful in overcoming poor TOCSY transfer for some amino acids. The secondary structure is derived from specific NOEs between backbone α- and amide protons, secondary chemical shifts of α-protons and chemical exchange for the backbone amide protons. It consists of eight β-strands, forming two β-sheets with four strands each, similar to the classical β-sandwich of the immunoglobulin superfamily, as previously predicted by sequence analysis. Two of the β-strands are connected by type II β-turns; the first β-strand forms a β-bulge. The whole topology is very similar to the only intracellular immunoglobulin-like domain for which a structure has been determined so far, i.e., telokin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BaxA. and DavisD.G. (1985) J. Magn. Reson., 65, 533–535.

    Google Scholar 

  • BorkP., HolmL. and SanderC. (1994) J. Mol. Biol., 242, 309–320.

    Google Scholar 

  • ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, International Series of Monographs on Chemistry, Vol. 14, Oxford Science Publications, Oxford.

    Google Scholar 

  • FürstD.O., OsbornM. and WeberK. (1988). J. Cell Biol., 106, 1563–1572.

    Google Scholar 

  • FürstD.O., VinkemeierU. and WeberK. (1992) J. Cell Sci., 102, 769–778.

    Google Scholar 

  • GautelM., LeonhardK. and LabeitS. (1993) EMBO J., 10, 3827–3834.

    Google Scholar 

  • GriesingerC., OttingG., WüthrichK. and ErnstR.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • GrzesiekS. and BaxA. (1993) J. Biomol. NMR, 3, 627–638.

    Google Scholar 

  • HarpazY. and ChothiaC. (1994) J. Mol. Biol., 238, 528–539.

    Google Scholar 

  • HoldenH.M., ItoM., HartshorneD.J. and RaymentI. (1992) J. Mol. Biol., 227, 840–851.

    Google Scholar 

  • KadkhodaeiM., HwangT.-L., TangJ. and ShakaA.J. (1993) J. Magn. Reson. Ser. A., 105, 104–107.

    Google Scholar 

  • LabeitS., GautelM., LakeyA. and TrinickJ. (1992) EMBO J., 11, 1711–1716.

    Google Scholar 

  • LämmliU.K. (1970) Nature, 227, 680–685.

    Google Scholar 

  • LeGriceS.F.J. and Grüninger-LeitchF. (1990) Eur. J. Biochem., 87, 307–314.

    Google Scholar 

  • LiY.-C. and MontelioneG.T. (1994) J. Magn. Reson., 105, 45–51.

    Google Scholar 

  • MaruyamaK., MatsubaraS., NatoriR., NonomuraY., KimuraS., OhashiK., MurakamiF., HandaS. and EguchiG. (1977) J. Biochem., 82, 317–337.

    Google Scholar 

  • MaruyamaK. (1994) Biophys. Chem., 50, 73–85.

    Google Scholar 

  • MitschangL., CieslarC., HolakT.A. and OschkinatH. (1991) J. Magn. Reson., 92, 208–217.

    Google Scholar 

  • NaveR., FürstD.O. and WeberK. (1989) J. Cell Biol., 109, 2177–2187.

    Google Scholar 

  • PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • PiottoM., SaudekV. and SklenářV. (1992) J. Biomol. NMR, 2, 661–665.

    Google Scholar 

  • PolitouA.S., GautelM., JosephC. and PastoreA. (1994a) FEBS Lett., 352, 27–31.

    Google Scholar 

  • PolitouA.S., GautelM., PfuhlM., LabeitS. and PastoreA. (1994b) Biochemistry, 33, 4730–4737.

    Google Scholar 

  • RichardsonJ.S., GetzoffE.D. and RichardsonD.C. (1978) Proc. Natl. Acad. Sci. USA, 75, 2574–2578.

    Google Scholar 

  • SaikiR.K., ScharfS.J., FaloonaF., MullisG.T. and EhrlichH.A. (1985) Science, 230, 1350–1354.

    Google Scholar 

  • SklenářV., PiottoM., LeppikR. and SaudekV. (1993) J. Magn. Reson., 102, 241–245.

    Google Scholar 

  • StonehouseJ., ShawG.L., KeelerJ. and LaueE.D. (1994) J. Magn. Reson., 107, 178–184.

    Google Scholar 

  • StudierF.W., RosenbergA.H. and DubendorfJ.W. (1990) Methods Enzymol., 185, 62–89.

    Google Scholar 

  • StudierF.W. and MoffatB.A. (1991) J. Mol. Biol., 189, 113–130.

    Google Scholar 

  • VinkemeierU., ObermannW., WeberK. and FürstD.O. (1993) J. Cell Sci., 106, 319–330.

    Google Scholar 

  • Wang, K. and Ramirez-Mitchell, R. (1979) J. Cell Biol., 83, 389a.

    Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • WüthrichK. (1976) NMR of Amino Acids and Nucleotides, North Holland, Amsterdam.

    Google Scholar 

  • WüthrichK., BilleterM. and BraunW. (1984) J. Mol. Biol., 180, 715–740.

    Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfuhl, M., Gautel, M., Politou, A.S. et al. Secondary structure determination by NMR spectroscopy of an immunoglobulin-like domain from the giant muscle protein titin. J Biomol NMR 6, 48–58 (1995). https://doi.org/10.1007/BF00417491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417491

Keywords

Navigation