Skip to main content
Log in

Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rates of shell regeneration in 15 species from all three suborders of prosobranch gastropods were related inversely to percent organic matrix of the shell. Since the gastropods in these experiments were not fed and therefore forced to rely upon stored energy reserves while regenerating this inverse relationship suggests that the production of skeletal organic matrix is more demanding metabolically than the crystallization of calcium carbonate. Such a relationship between the organic and inorganic components of carbonate skeletons may help explain the evolutionary loss of skeletal microstructures with a high percent organic matrix in several major invertebrate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andrews, F. A.: Shell repair by the snail, Neritina. J. exp. Zool. 70, 75–107 (1935)

    Google Scholar 

  • Bernard, F. R.: Annual biodeposition and gross energy budget of mature Pacific oysters, Crassostrea gigas J. Fish. Res. Bd. Can. 31, 185–190 (1973)

    Google Scholar 

  • Cameron, C.J. I. F. Cameron and C. G. Paterson: Contributions of organic shell matter to biomass estimates of unionid bivalves. Can. J. Zool. 57, 1666–1669 (1979)

    Google Scholar 

  • Carter, J. G.: Environmental and biological controls of bivalve shell minerology and structure pp. 69–115 In: Skeletal growth of aquatic organisms, (Ed. by D. C. Rhoads and R. A. Lutz) New York: Plenum 1980

    Google Scholar 

  • Currey, J. D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B196, 443–463 (1977)

    Google Scholar 

  • Currey, J. D. and J. D. Taylor: The mechanical behavior of some molluscan hard tissues. J. Zool. (Lond.) 173, 395–406 (1974)

    Google Scholar 

  • Dame, R. F.: The ecological energies of growth, respiration and assimilation in the American oyster, Crassostrea virginica. Mar. Biol. 17, 243–250 (1972)

    Google Scholar 

  • Degens, E. T., D. W. Spencer and R. H. Parker: Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 20, 553–579 (1967)

    Google Scholar 

  • Dixon, D. R.: The energetics of tube production by Mercierella enigmata. J. mar. biol. Ass. UK. 60, 655–659 (1980)

    Google Scholar 

  • Geller, J. B.: Microstructure of shell repair materials in Tegula funebralis (A. Adams, 1859). Veliger 25, 155–159 (1982)

    Google Scholar 

  • Griffiths, C. L. and J. A. King: Energy expended on growth and gonad output in the ribbed mussel Aulacomya ater. Mar. Biol. 53, 217–222 (1979)

    Google Scholar 

  • Hare, P. E. and P. H. Abelson: Amino Acid composition of some calcified proteins. Carnegie Inst. Wash. D. C., Yearbook 64, 223–231 (1965)

    Google Scholar 

  • Highsmith, R. C.: Coral growth rates and environmental control of density banding. J. exp. mar. Biol. Ecol. 37, 105–125 (1979)

    Google Scholar 

  • Hughes, R. N.: An energy budget for a tide-flat population of the bivalve Scrobicularia plana (Da Costa). J. Anim. Ecol. 39, 357–381 (1970)

    Google Scholar 

  • Kuenzler, E. J.: Structure and energy flow of a mussel population in a Georgia salt marsh. Limnol. Oceanogr 6, 191–204 (1961)

    Google Scholar 

  • Loosanoff, V. L. and C. A. Nomejko: Growth of oysters with damaged shell edges. Biol. Bull. Mar. biol. Lab., Woods Hole 108, 151–159 (1955)

    Google Scholar 

  • Loya, Y.: Skeletal regeneration in a Red Sea scleractinian coral population. Nature, Lond. 261, 490–491 (1976)

    Google Scholar 

  • Manahan, D. T., S. H. Wright, G. C. Stephens and M. A. Rice: Transport of dissolved amino acids by the mussel, Mytilus edulis: demonstration of net uptake from natural seawater. Science, N.Y. 215, 1253–1255 (1982)

    Google Scholar 

  • Meenakshi, V. R., P. L. Blackwelder and K. M. Wilbur: An ultrastructural study of shell regeneration in Mytilus edulis (Mollusca: Bivalvia). J. Zool. (Lond.) 171, 475–484 (1973)

    Google Scholar 

  • Meenakshi, V. R., A. W. Martin and K. M. Wilbur: Shell repair in Nautilus macromphalus. Mar. Biol. 27, 27–35 (1974)

    Google Scholar 

  • Mohlenberg, F. and T. Kiorboe: Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material. Ophelia 20, 79–90 (1981)

    Google Scholar 

  • Nakahara, H., M. Kakei and G. Bevelander: Studies on the formation of the crossed lamellar structure in the shell of Strombus gigas. Veliger 23, 207–211 (1981)

    Google Scholar 

  • O'Neill, P. L.: Polycrystalline echinoderm calcite and its fracture mechanics. Science, N.Y. 213, 646–648 (1981)

    Google Scholar 

  • Paine, R. T.: Energy flow in a natural population of a herbivorous gastropod Tegula funebralis. Limnol. Oceanogr. 16, 86–98 (1971a)

    Google Scholar 

  • Paine, R. T.: The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. Syst. 2, 145–164 (1971b)

    Google Scholar 

  • Palmer, A. R.: Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33, 698–713 (1979)

    Google Scholar 

  • Palmer, A. R.: Do carbonate skeletons limit the rate of body growth? Nature, Lond. 292, 150–152 (1981)

    Google Scholar 

  • Palmer, A. R.: Growth in marine gastropods: a non-destructive technique for independently measuring shell and body weight. Malacologia 23, 63–73 (1982)

    Google Scholar 

  • Rachootin, S.: Zooxanthellae. pp. 852–854 In: Encyclopedia of paleontology. Ed. by R. W. Fairbridge and D. Jablonski. Stroudsburg: Dowden, Hutchinson and Ross 1979

    Google Scholar 

  • Rasmussen, E.: Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11, 1–507 (1973)

    Google Scholar 

  • Raup, D. M.. The endoskeleton, pp 379–395. In: Physiology of Echinodermata (Ed. by R. A. Boolootian). New York: Interscience 1966

    Google Scholar 

  • Rhoads, D. C. and R. A. Lutz (eds.) Skeletal growth of aquatic organisms, 750 pp (New York: Plenum Press) 1980

    Google Scholar 

  • Rodhouse, P. G.: A note on the energy budget for an oyster population in a temperate estuary. J. exp. mar. Biol. Ecol. 37, 205–212 (1979)

    Google Scholar 

  • Rosenberg, G. D.: An ontogenetic approach to the environmental significance of bivalve shell chemistry, pp 133–168. In: Skeletal growth of aquatic organisms. Ed. by D. C. Rhoads and R. A. Lutz. New York: Plenum 1980

    Google Scholar 

  • Simkiss, K.: Cellular aspects of calcification. pp 1–32. In: The mechanisms of mineralization in the invertebrates and plants. Ed. by N. Watabe and K. M. Wilbur. Columbia: University of South Carolina Press 1976

    Google Scholar 

  • Stickle, W. B. and B. Bayne: Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella) lapillus (L.). J. exp. mar. Biol. Ecol. 58, 1–17 (1982)

    Google Scholar 

  • Stickle, W. B. and F. G. Duerr: The effects of starvation on the respiration and major nutrient stores of Thais lamellosa. Comp. Biochem. Physiol. 33, 689–695 (1970)

    Google Scholar 

  • Taylor, J. D.: The structural evolution of the bivalve shell. Paleontology 16, 519–534 (1973)

    Google Scholar 

  • Taylor, J. D. and M. Layman: The mechanical properties of bivalve (Mollusca) shell structure. Paleontology 15, 73–87 (1972)

    Google Scholar 

  • Tsujii, T.: An electron microscopic study of the mantle epithelial cells of Anodonta sp. during shell regeneration, pp 339–353. In: The mechanisms of mineralization in invertebrates and plants. Ed. by N. Watabe and K. M. Wilbur, Columbia: Univ. S. Carol. Press 1976

    Google Scholar 

  • Vahl, O.: Energy transformations by the Icelandic scallop, Chlamys islandica (O. F. Muller), from 70oN. I The age-specific energy budget and net growth efficiency. J. exp. mar. Biol. Ecol 53, 281–296 (1981)

    Google Scholar 

  • Vermeij, J. G.: Biogeography and adaptation: patterns of marine life, 416 pp. Cambridge: Harvard University Press 1978

    Google Scholar 

  • Vincent, J. F. V.: Structural biomaterials, 206 pp. Toronto: Wiley and Sons 1982

    Google Scholar 

  • Vinogradov, A. P.: The elementary chemical composition of marine organisms. Mem. Sears Foundation mar. Res. 2, 1–647 (1953)

    Google Scholar 

  • Watabe, N. and K. M. Wilbur (eds.): The mechanisms of mineralization in invertebrates and plants. 461 pp. Columbia: University of S. Carolina Press 1976

    Google Scholar 

  • Wheeler, A. P., J. W. George and C. A. Evans: Control of calcium carbonate nucleation and crystal growth of soluble matrix of oyster shell. Science, N. Y. 212, 1397–1398 (1981)

    Google Scholar 

  • Wilbur, K. M.: Mineral regeneration in echinoderms and molluscs, pp 7–33. In: Symposium on hard tissue repair, growth and mineralization. London: CIBA Foundation 1973

    Google Scholar 

  • Williams, A. and A. J. Rowell: Evolution and phylogeny, pp H164-H198. In: Treatise on invertebrate paleontology. Ed. by R. C. Moore. Lawrence: University of Kansas Press 1965

    Google Scholar 

  • Wu, R. S. S. and C. D. Levings: An energy budget for individual barnacles (Balanus glandula). Mar. Biol. 45, 225–235 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. O. Fournier, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, A.R. Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods. Mar. Biol. 75, 287–292 (1983). https://doi.org/10.1007/BF00406014

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406014

Keywords

Navigation