Skip to main content
Log in

Metabolic regulation in methanogenic archaea during growth on hydrogen and CO2

  • Case Notes
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Methanogenic Archaea represent a unique group of micro-organisms in their ability to derive their energy for growth from the conversion of their substrates to methane. The common substrates are hydrogen and CO2. The energy obtained in the latter conversion is highly dependent on the hydrogen concentration which may dramatically vary in their natural habitats and under laboratory conditions. In this review the bio-energetic consequences of the variations in hydrogen supply will be investigated. It will be described how the organisms seem to be equipped as to their methanogenic apparatus to cope with extremes in hydrogen availability and how they could respond to hydrogen changes by the regulation of their metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Coenzyme F420 :

5-dezaflavin derivative

F420H2 :

1,5-dihydro-F420

F390 :

8-adenylylated-(F390-A) or 8-OH-guanylylated-(F390-G)-F420

H4MPT:

5,6,7,8-tetrahydromethanopterin

HS-CoM:

coenzyme M, 2-mercaptoethanesulfonate

methyl-S-CoM:

2-methylthioethanesulfonate

HS-HTP:

7-mercaptoheptanoylthreonine phosphate

CoM-S-S-HTP:

heterodisulfide of HS-CoM and HS-HTP

FDH:

formylmethanofuran dehydrogenase

FRH:

coenzyme F420-reducing hydrogenase

HDR:

heterodisulfide reductase

MCR:

methylcoenzyme M reductase

MDH:

5,10-methylene-H4MPT dehydrogenase

MVH:

non-coenzyme F420, Viologen-reducing hydrogenase

References

  • Becher, B., Müller, V. and Gottschalk, G.: 1992a, ‘The Methyl-Tetrahydromethanopterin: Coenzyme Methyltrasferase of Methanosarcina strain Gö 1 is a Primary Sodium Pump’, FEMS Microbiol. Lett. 91, 239–244.

    Google Scholar 

  • Becher, B., Müller, V. and Gottschalk, G.: 1992b. ‘N5-Methyltetrahydromethanopterin: Coenzyme Methyltransferase of Methanosarcina Strain Gö 1 is an Na+-Translocating Membrane Protein’, J. Bacteriol. 174, 7656–7660.

    Google Scholar 

  • Becher, B. and Müller, V.: 1994, ‘33-1 Drives the Synthesis of ATP via an 33-2 F1F0-ATP Synthetase in Membrane Vesicles of the Archaeon Methanosarcina mazei Gö 1’, J. Bacteriol. 176, 2543–2550.

    Google Scholar 

  • Bertram, P. A., Schmitz, R. A., Linder, D. and Thauer, R. K.: 1994, ‘Tungstate Can Substitute for Molybdate in Sustaining Growth of Methanobacterium thermoautotrophicum: Identification and Characterization of a Tungsten Isoenzyme of Formyl-Methanofuran Dehydrogenase, Arch. Microbiol. 161, 220–228.

    Google Scholar 

  • Blaut, M., Müller, V. and Gottschalk, G.: 1987, ‘Proton Translocation Coupled to Methanogenesis From Methanol + Hydrogen in Methanosarcina barkeri’, FEBS Lett. 215, 53–57.

    Google Scholar 

  • Bobik, T. A. and Wolfe, R. S.: 1988, ‘Physiological Importance of the Heterodisulfide of Coenzyme M and 7-Mercaptoheptanoylthreonine Phosphate in the Reduction of Carbon Dioxide to Methane in Methanobacterium’, Proc. Natl. Acad. Sci. U.S.A. 85, 60–63.

    Google Scholar 

  • Bonacker, L. G., Baudner, S. and Thauer, R. K.: 1992, ‘Differential Expression of the Two Methyl-Coenzyme M Reductases in Methanobacterium thermoautotrophicum as Determined Immunochemically via Isoenzyme-Specific Antisera’, Eur. J. Biochem. 206, 87–92.

    Google Scholar 

  • Bonacker, L. G., Baudner, S., Mörschel, E., Böcher, R. and Thauer, R. K.: 1993, ‘Properties of the Two Isoenzymes of Methyl-Coenzyme M Reductase in Methanobacterium thermoautotrophicum’, Eur. J. Biochem. 217, 587–595.

    Google Scholar 

  • Butsch, B. M. and Bachofen, R.: 1984, ‘The Membrane Potential in Whole Cells of Methanobacterium Thermoautotrophicum’, Arch. Microbiol. 138, 293–298.

    Google Scholar 

  • Conrad, R., Phelps, T. J. and Zeikus, J. G.: 1986a, ‘Gas Metabolism Evidence in Support of the Juxtapositions of Hydrogen-producing and Methanogenic Bacteria in Sewage Sludge and Lake Sediments’, Appl. Eviron. Microbiol. 50, 595–601.

    Google Scholar 

  • Conrad, R., Schink, B. and Phelps, T. J.: 1986b, ‘Thermodynamics of H2-consuming and H2-producing Metabolic Reactions in Diverse Methanogenic Environments Under in situ Conditions’, FEMS Microbiol. Ecol. 38, 353–360.

    Google Scholar 

  • Conrad, R. and Wetter, B.: 1990, ‘Influence of Temperature on Energetics of Hydrogen Metabolism in Homoacetogenic, Methanogenic and other Bacteria’, Arch. Microbiol. 155, 94–98.

    Google Scholar 

  • Cord-Ruwish, R., Seitz, H.-J. and Conrad, R.: 1988, ‘The Capacity of Hydrogenotropic Anaerobic Bacteria to Compete for Traces of Hydrogen Depends on the Redox Potential of the Terminal Electron Acceptor’, Arch. Microbiol. 149, 350–357.

    Google Scholar 

  • Deppenmeier, U., Blaut, M., Mahlmann, A. and Gottschalk, G.: 1990a, ‘Reduced Coenzyme F420: Heterodisulfide Oxidoreductase, a Proton-Translocating Redox System in Methanogenic Bacteria’, Proc. Natl. Acad. Sci. U.S.A. 87, 9449–9453.

    Google Scholar 

  • Deppenmeier, U., Blaut, M., Mahlmann, A. and Gottschalk, G.: 1990b, ‘Membrane-bound F420H2-dependent Heterodisulfide Reductase in Methanogenic Bacterium Gö 1 and Methanolobus tindarius’, FEBS Lett. 261, 199–203.

    Google Scholar 

  • Deppenmeier, U., Blaut, M. and Gottschalk, G.: 1991, ‘H2: Heterodisulfide Oxidoreductase, A Second Energy-Conserving System in the Methanogenic Strain Gö 1’, Arch. Microbiol. 155, 272–277.

    Google Scholar 

  • Deppenmeier, U., Blaut, M., Lentes, S., Herzberg, C. and Gottschalk, G.: 1995, ‘Analysis of the vhoGAC and vhtGAC operons from Methanosarcina Mazei Strain Gö 1, Both Encoding a Membrane-bound Hydrogenase and a Cytochrome b’, Eur. J. Biochem. 227, 261–269.

    Google Scholar 

  • Dimroth, P.: 1992, ‘The ATPases of Propiogenium modestum and Bacillus alcalophilus. Strategies for ATP Synthesis Under Low Energy Conditions’, Biochim. Biophys. Acta 1101, 236–239.

    Google Scholar 

  • Dolfing, J.: 1992, ‘The Energetic Consequences of Hydrogen Gradients in Methanogenic Ecosystems’, FEMS Microbiol. Ecol. 101, 183–187.

    Google Scholar 

  • Fardeau, M.-L, and Belaich, J.-P.: 1986, ‘Energetics of the Growth of Methanococcus thermolithotrophicus’, Arch. Microbiol. 144, 381–385.

    Google Scholar 

  • Fiebig, K., Massanz, C., Michel, R. and Müller, M.: 1994, Biochemical and Molecular Biological Characterization of the Coenzyme F420-reducing Hydrogenase from Methanosarcina barkeri strain Fusaro’, in Abstracts of the Fourth International Conference on the Molecular Biology of Hydrogenases', Noordwijkerhout, The Netherlands, pp. 39–40.

  • Fischer, R., Gärtner, P., Yeliseev, A. and Thauer, R. K.: 1992, ‘N5-Methyltetrahydromethanopterin: Coenzyme M Methyltransferase in Methanogenic Archaebacteria is a Membrane Protein’, Arch. Microbiol. 158, 208–217.

    Google Scholar 

  • Gärtner, P., Ecker, A., Fischer, R., Linder, D., Fuchs, G. and Thauer, R. K.: 1993, ‘Purification and Properties of N5-Methyltetrahydromethanopterin: Coenzyme M Methyltransferase from Methanobacterium thermoautotrophicum’, Eur. J. Biochem. 213, 537–545.

    Google Scholar 

  • Gottschalk, G. and Blaut, M.: 1990, ‘Generation of Proton and Sodium Motive Forces in Methanogenic Bacteria’, Biochim. Biophys. Acta 1018, 263–266.

    Google Scholar 

  • Gunsalus, R. P. and Wolfe, R. S.: 1977, ‘The Stimulation of CO2 Reduction to Methane by Methylcoenzyme M in Extracts of Methanobacterium’, Biochem. Biophys. Res. Commun. 76, 790–795.

    Google Scholar 

  • Haase, P., Deppermeier, U., Blaut, M. and Gottschalk, G.: 1992, ‘Purification and Characterization of F420H2-Dehydrogenase from Methanolobus tindarius’, Eur. J. Biochem. 203, 527–531.

    Google Scholar 

  • Halboth, S. and Klein, A.: 1992, ‘Methanococcus voltae Harbors Four Gene Clusters Potentially Encoding Two [NiFe] and Two [NiFeSe] Hydrogenases, Each of the Cofactor F420-reducing or F420-non-reducing Types’, Mol. Gen. Genet. 233, 217–224.

    Google Scholar 

  • Hausinger, R. P., Orme-Johnson, W. H. and Walsh, C.: 1985, ‘Factor 390 Chromophores: Phosphodiester between AMP and GMP and Methanogenic Factor 420’, Biochemistry 24, 1629–1633.

    Google Scholar 

  • Hedderich, R., Berkessel, A. and Thauer, R. K.: 1990, ‘Purification and Properties of Heterodisulfide Reductase from Methanobacterium thermoautotrophicum (strain Marburg)’, Eur. J. Biochem. 193, 255–261.

    Google Scholar 

  • Hedderich, R., Koch, J., Linder, D. and Thauer, R. K.: 1994, ‘The Heterodisulfide Reductase From Methanobacterium thermoautotrophicum Contains Sequence Motifs Characteristic of Pyridine-Nucleotide-Dependent Thioredioxine Reductases’, Eur. J. Biochem. 225, 253–261.

    Google Scholar 

  • Heiden, S., Hedderich, R., Setzke, E. and Thauer, R. K.: 1993, ‘Purification of a Cytochrome b Containing H2: Heterodisulfide Oxidoreductase Complex from Membranes of Methanosarcina barkeri’, Eur. J. Biochem. 213, 529–535.

    Google Scholar 

  • Heiden, S., Hedderich, R., Setzke, E. and Thauer, R. K.: 1994, ‘Purification of a two-subunit Cytochrome-b-Containing Heterodisulfide Reductase from methanol-grown Methanosarcina barkeri’, Eur. J. Biochem. 221, 855–861.

    Google Scholar 

  • Kaesler, B. and Schönheit, P.: 1989a, ‘The Role of Sodium Ions in Methanogenesis. Formaldehyde Oxidation to CO2 in Methanogenic Bacteria is Coupled with Primary Electrogenic Na+ Translocation at a Stoichiometry of 2–3 Na+/CO2, Eur. J. Biochem. 184, 223–232.

    Google Scholar 

  • Kaesler, B. and Schönheit, P.: 1989b, ‘The Sodium Cycle in Methanogenesis. CO2 Reduction to the Formaldehyde Level in Methanogenic Bacteria is Driven by a Primary Electrochemical Potential of Na+ Generated by Formaldehyde Reduction to CH4’, Eur. J. Biochem. 196, 309–316.

    Google Scholar 

  • Karrasch, M., Börner, G., Enßle, M. and Thauer, R. K.: 1990, ‘The Molybdoenzyme Formylmethanofuran Dehydrogenase From Methanosarcina barkeri Contains a Pterin Cofactor’, Eur. J. Biochem. 194, 367–372.

    Google Scholar 

  • Keltjens, J. T. and Van der Drift, C.: 1986, ‘Electron Transfer Reactions in Methanogens’, FEMS Microbiol. Rev. 39, 259–303.

    Google Scholar 

  • Keltjens, J. T., Raemakers-Franken, P. C. and Vogels, G. D.: 1993, ‘Methanopterin, its Structural Diversity and Functional Uniqueness’, in: Murrell, J. C. and Kelly, D. P. (eds.), Microbial Growth on C 1 Compounds Intercept Ltd., Andover, England, pp. 135–150.

    Google Scholar 

  • Kengen, S. W. M., Von den Hoff, H. W., Keltjens, J. T., Van der Drift, C. and Vogels, G. D.: 1991, ‘Hydrolysis and Reduction of Factor 390 by Cell Extracts of Methanobacterium thermoautotrophicum strain ΔH’, J. Bacteriol. 173, 2283–2288.

    Google Scholar 

  • Kengen, S. W. M., Daas, P. J. H., Duits, E. F. G., Keltjens, J. T., Van der Drift, C. and Vogels, G. D.: 1992, ‘Isolation of a 5-Hydroxybenzimidazolyl Cobamide-containing Enzyme Involved in the Methyltetrahydromethanopterin: Coenzyme M Methyltransferase Reaction in Methanobacterium thermoautotrophicum’, Biochim. Biophys. Acta 1118, 249–260.

    Google Scholar 

  • Lehmacher, A. and Klenk, H.-P.: 1994, ‘Characterization and Phylogeny of mcrII, a Gene Cluster Encoding an Isoenzyme of Methyl Coenzyme M Reductase from Hyperthermophilic Methanothermus fervidus’, Mol. Gen. Genet. 243, 198–206.

    Google Scholar 

  • MacLeod, F. A., Guiot, S. R. and Costerton, J. W.: 1990, ‘Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor’, Appl. Environ. Microbiol. 56, 1598–1607.

    Google Scholar 

  • McInerney, M. J., Bryant, M. P. and Pfennig, N.: 1979, ‘Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens’, Arch. Microbiol. 122, 129–135.

    Google Scholar 

  • Mukhopadhyay, B., Purwantini, E. and Daniels, L.: 1993, ‘Effect of Methanogenic Substrates on Coenzyme F420-dependent N5,N10-Methylene-H4MPT Dehydrogenase, N5,N10-Methenyl-H4MPT Cyclohydrolase and F420-reducing Hydrogenase Activities in Methanosarcina barkeri’, Arch. Microbiol. 159, 141–146.

    Google Scholar 

  • Müller, V., Blaut, M. and Gotschalk, G.: 1987, ‘Generation of a Transmembrane Gradient of Na+ in Methanosarcina barkeri’, Eur. J. Biochem. 162, 461–466.

    Google Scholar 

  • Nölling, J., Pihl, T. D., Vriesema, A. and Reere, J. N.: 1995, ‘Organization and Growth-Phase-Dependent Transcription of Methane Genes in Two Regions of the Methanobacterium thermoautotrophicum Genome’, J. Bacteriol. 177, 2460–2468.

    Google Scholar 

  • Peer, C., Painter, M. H., Rasche, M. E. and Ferry, J. G.: 1994, ‘Characterization of a CO-Heterodisulfide Oxidoreductasae System from Acetate-Grown Methanosarcina thermophila’, J. Bacteriol. 176, 6974–6979.

    Google Scholar 

  • Pihl, T. D., Sharma, S. and Reeve, J.: 1994, ‘Growth-Phase-Dependent Transscription of the Genes that Encode the Two Methyl Coenzyme M Reductase Isoenzymes and N5-Methyltetrahydromethanopterin:Coenzyme M Methyltransferase in Methanobacterium thermoautotrophicum ΔH’, J. Bacteriol 176, 6384–6391.

    Google Scholar 

  • Reeve, J. N., Beckler, G. S., Cram, D. S., Hamilton, P. T., Brown, J. W., Krzycki, J. A., Kolodziej, A. F., Alex, L. and Orme-Johnson, W. H.: 1989, ‘Hydrogenase-linked Gene in Methanobacterium thermoautotrophicum Strain ΔH Encodes a Polyferredoxin’, Proc. Natl. Acad. Sci. U.S.A. 86, 3031–3035.

    Google Scholar 

  • Reeve, J. N.: 1992, ‘Molecular Biology of Methanogens’, Ann. Rev. Microbiol. 46, 165–191.

    Google Scholar 

  • Roberton, A. M. and Wolfe, R. S.: 1970, ‘Adenosine Triphosphate Pools in Methanobacterium’, J. Bacteriol. 102, 43–51.

    Google Scholar 

  • Rospert, S., Linder, D., Ellermann, J. and Thauer, R. K.: 1990, ‘Two Genetically Distinct Methylcoenzyme M Reductases in Methanobacterium thermoautotrophicum strain Marburg and ΔH’, Eur. J. Biochem. 194, 871–877.

    Google Scholar 

  • Schäfer, G. and Meyering-Vos, M.: 1992, ‘F-Type or V-Type — The Chimeric Nature of the Archaebacterial ATP Synthase’, Biochim. Biophys. Acta 1101, 232–235.

    Google Scholar 

  • Schauer, N. L. and Ferry, J. G.: 1980, ‘Metabolism of Formate in Methanobacterium formicicum’, J. Bacteriol. 142, 800–807.

    Google Scholar 

  • Schink, B. and Friedrich, M.: 1994, ‘Energetics of Syntrophic Fatty Acid Oxidation’, FEMS Microbiol. Rev. 15, 85–94.

    Google Scholar 

  • Schmitz, R. A., Albracht, S. P. J. and Thauer, R. K.: 1992, ‘A Molybdenum and a Tungsten Isoenzyme of Formylmethanofuran Dehydrogenase in the Thermophilic Archaeon Methanobacterium wolfei’, Eur. J. Biochem. 209, 1013–1018.

    Google Scholar 

  • Schmitz, R. A., Bertam, P. and Thauer, R. K.: 1994, ‘Tungstate Does Not Support Synthesis of Active Formylmethanofuran Dehydrogenase in Methanosarcina barkeri’, Arch. Microbiol. 161, 528–530.

    Google Scholar 

  • Schönheit, P., Moll, J. and Thauer, R. K.: 1980, ‘Growth Parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum’, Arch. Microbiol. 127, 59–65.

    Google Scholar 

  • Schönheit, P. and Beimborn, D. B.: 1985, ‘Presence of a Na+/H+ Antiporter in Methanobacterium thermoautotrophicum And Its Role in Na+-dependent Methanogenesis’, Arch. Microbiol. 142, 354–361.

    Google Scholar 

  • Schwörer, B. and Thauer, R. K.: 1991, ‘Activities of Formylmethanofuran dehydrogenase, Methylenetetrahydromethanopterin Dehydrogenase, Methylenetetrahydromethanopterin Reductase, and Heterodisulfide Reductase in Methanogenic Bacteria’, Arch. Microbiol. 155, 459–465.

    Google Scholar 

  • Setzke, E., Hedderich, R., Heiden, S. and Thauer, R. K.: 1994, ‘H2: Heterodisulfide Oxidoreductase Complex from Methanobacterium thermoautotrophicum. Composition and Properties’, Eur. J. Biochem. 220, 139–148.

    Google Scholar 

  • Šmigán P., Majernik A. and Greksák M.: ‘Na+-driven ATP Synthesis in Methanobacterium thermoautotrophicum and its Differentiation from H+-driven ATP Synthesis by Rhodamine 6G’, FEBS Lett. 349, 424–428.

  • Sparling R. and Daniels L.: ‘Regulation of Formate Dehydrogenase Activity in Methanococcus thermolithotrophicus’, J. Bacteriol. 172, 1464–1469.

  • Steigerwald, V. J., Hennigan, A. N., Pihl, T. D. and Reeve, J. N.: 1993, ‘Genes Encoding the Methyl Viologen-reducing Hydrogenase, Polyferredoxin and methyl Coenzyme M Reductase II are Adjacent in the Genomes of Methanobacterium thermoautotrophicum and Methanothermus fervidus’, in: Murrell, J. C. and Kelly, D. P. (eds.), Microbial Growth on C 1 Compounds, Intercept Ltd., Andover, England, pp. 181–191.

    Google Scholar 

  • Stupperich, E., Juza, A., Hoppert, M. and Mayer, F.: 1993, ‘Cloning, Sequencing and Immunological Characterization of the Corrinoid-containing Subunit of the N5-Methyltetrahydromethanopterin: Coenzyme M Methyltransferase from Methanobacterium Hermoautotrophicum’, Eur. J. Biochem. 217, 115–121.

    Google Scholar 

  • Te Brömmelstroet, B. W., Hensgens, C. M. H., Keltjens, J. T., van der Drift, C. and Vogels G. D.: 1990, ‘Purification and Properties of 5,10-Methylenetetrahydromethanopterin Reductase, a Coenzyme F420-dependent Enzyme, from Methanobacterium thermoautotrophicum Strain ΔH’, J. Biol. Chem. 265, 1852–1857.

    Google Scholar 

  • Thauer, R. K.: 1990, ‘Energy Metabolism of Methanogenic Bacteria’, Biochim. Biophys. Acta 1018, 256–259.

    Google Scholar 

  • Trumpower, B. L.: 1990, ‘The Protonmotive Q cycle. Energy Transduction by Coupling of Proton Translocation to Electron Transfer by the Cytochrome bc 1 Complex’, J. Biol. Chem. 265, 11409–11412.

    Google Scholar 

  • Tsao, J.-H., Kaneshiro, S. M., Yu, S. and Clark, D. S.: 1994, ‘Continuous Culture of Methanococcus jannaschii, an Extremely Thermophilic Methanogen’, Biotechnol. Bioeng. 43, 258–261.

    Google Scholar 

  • Vermeij, P., Detmers, F. J. M., Broers, F. J. M., Keltjens, J. T., van der Drift, C.: 1994, ‘Purification and Characterization of Coenzyme F390 Synthetase from Methanobacterium thermoautotrophicum (strain ΔH)’, Eur. J. Biochem. 226, 185–191.

    Google Scholar 

  • Vermeij, P., Vinke, E., Keltjens, J. T. and Van der Drift, C.: 1995, ‘Purification and Properties of Coenzyme F390 Hydrolase from Methanobacterium thermoautotrophicum (strain Marburg)’, Eur. J. Biochem. 234, 592–597.

    Google Scholar 

  • Von Bünau, R., Zirngibl, C., Thauer, R. K. and Klein, A.: 1991, ‘Hydrogen-forming and Coenzyme-F420-reducing Methylene Tetrahydromethanopterin Dehydrogenase are Genetically Distinct Enzymes in Methanobacterium thermoautotrophicum (Marburg)’, Eur. J. Biochem. 202, 1205–1208.

    Google Scholar 

  • Weimer, P. J. and Zeikus, J. G.: 1978, ‘One Carbon Metabolism in Methanogenic Bacteria. Cellular Characterization and Growth of Methanosarcina barkerí, Arch. Microbiol. 119, 49–57.

    Google Scholar 

  • Weiss, D. S. and Thauer, R. K.: 1993, ‘Methanogenesis and the Unity of Biochemistry’, Cell 72, 819–822.

    Google Scholar 

  • Widdel, F. and Wolfe, R. S.: 1989, ‘Expression of Secondary Alcohol Dehydrogenase in Methanogenic Bacteria and Purification of the F420-specific Enzyme from Methanogenium thermophilum strain TCI’, Arch. Microbiol. 152, 322–328.

    Google Scholar 

  • Wolfe, R. S.: 1991, ‘My Kind of Biology’, Ann. Rev. Microbiol. 45, 1–35.

    Google Scholar 

  • Woo, G.-J., Wasserfallen, A. and Wolfe, R. S.: 1993, ‘Methyl Viologen Hydrogenase II, A New Member of the Hydrogenase Family from Methanobacterium thermoautotrophicum ΔH’, J. Bacteriol. 175, 5970–5977.

    Google Scholar 

  • Zehnder, A. J. B. and Wuhrmann, K.: 1977, ‘Physiology of a Methanobacterium Strain AZ’, Arch. Microbiol. 111, 199–205.

    Google Scholar 

  • Zinder, S. H. and Mah, R. A.: 1979, ‘Isolation and Characterization of a Thermophilic Strain of Methanosarcina Unable to use H2−CO2 for Methanogenesis’, Appl. Environ. Microbiol. 38, 996–1008.

    Google Scholar 

  • Zinder, S. H.: 1993, ‘Physiological Ecology of Methanogens’, in: Ferry, J. G. (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics’, Chapman and Hall, New York, London, pp. 128–206.

    Google Scholar 

  • Zirngibl, C., van Dongen, W., Schwörer, B., von Bünau, R., Richter, M. Kein, A. and Thauer, R. K.: 1992, ‘H2-forming Methylenetetrahydromethanopterin Dehydrogenase, a Novel Type of Hydrogenase Without Iron-Sulfur Clusters in Methanogenic Archaea’, Eur. J. Biochem. 208, 511–520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keltjens, J.T., Vogels, G.D. Metabolic regulation in methanogenic archaea during growth on hydrogen and CO2 . Environ Monit Assess 42, 19–37 (1996). https://doi.org/10.1007/BF00394040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394040

Keywords

Navigation