Skip to main content
Log in

Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Combined gas chromatography-mass spectrometry showed that C21, C23, and C25 n-alkanes accumulated in the suberized layers during wound healing of cores of potato tuber tissue. Treatment (10 min) of freshly-cut tissue with trichloroacetate (TCA), an inhibitor of fatty-acid chain elongation, severely inhibited accumulation of hydrocarbons and fatty alcohols associated with the suberized layer in the wound healing tissue (maximum inhibition at 4 mM) but had very little effect on the deposition of the major aliphatic components of the suberin polymer. This preferential inhibition of wax synthesis resulted in severe inhibition of the development of diffusion resistance of the tissue to water vapor. These results strongly indicate that the waxes associated with the suberin polymer, rather than the polymer itself, consitute the major diffusion barrier formed during wound healing. Electron-microscopic examination showed that inhibition of wax synthesis by TCA disrupted the formation of the lamellar structure of suberin specifically by preventing the formation of the light bands. This evidence strongly suggests that the light bands in the suberin complex are composed of waxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, V.P., Kolattukudy, P.E.: Biochemistry of suberization. ω-hydroxyacid oxidation in enzyme preparations from suberizing potato tuber disks. Plant Physiol. 59, 667–672 (1977)

    Google Scholar 

  • Brieskorn, C.H., Binnemann, P.H.: Chemische Zusammensetzung des Suberins der Kartoffelschale. Z. Lebensm. Unters. Forsch. 154, 213–222 (1974)

    Google Scholar 

  • Dean, B.B., Kolattukudy, P.E.: Biochemistry of suberization. Incorporation of [1-14C]oleic acid and [1-14C]acetate into the aliphatic components of suberin in potato tuber disks (Solanum tuberosum). Plant Physiol. 59, 48–54 (1977)

    Google Scholar 

  • Dean, B.B., Kolattukudy, P.E., Davis, R.W.: Chemical composition and ultrastructure of suberin from hollow heart tissue of potato tubers (Solanum tuberosum). Plant Physiol 59, 1008–1010 (1977)

    Google Scholar 

  • Falk, V.H., El-Hadidi, M.N.: Der Feinbau der Suberinschichten verkorkter Zellwände. Z. Naturforsch. 16b, 134–137 (1961)

    Google Scholar 

  • Folch, J., Lees, M., Sloane-Stanley, G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    PubMed  Google Scholar 

  • Kolattukudy, P.E.: Biosynthesis of paraffins in Brassica oleracea: Fatty acid elongation-decarboxylation as a plausible pathway. Phytochemistry 6, 963–975 (1967)

    Article  Google Scholar 

  • Kolattukudy, P.E.: Further evidence for an elongation-decarboxylation mechanism in the biosynthesis of paraffins in leaves. Plant Physiol. 43, 375–383 (1968)

    Google Scholar 

  • Kolattukudy, P.E.: Lipid polymers and associated phenols, their chemistry, biosynthesis, and role in pathogenesis. Recent Adv. Phytochem. 11, 185–246 (1977)

    Google Scholar 

  • Kolattukudy, P.E.: Chemistry and biochemistry of the aliphatic components of suberin. In: Biochemistry of Wounded Plant Tissues, pp. 43–84, Kahl, G., ed. Berlin, New York: Walter de Gruyter & Co. 1978

    Google Scholar 

  • Kolattukudy, P.E., Dean, B.B.: Structure, gas chromatographic measurement, and function of suberin synthesized by potato tuber tissue slices. Plant Physiol. 54, 116–121 (1974)

    Google Scholar 

  • Kolattukudy, P.E., Walton, T.J.: The biochemistry of plant cuticular lipids. In: Progress in the Chemistry of Fats and Other Lipids, vol. XIII, pt. 3, pp. 121–174, Holman, R.T., ed. New York: Pergamon Press 1973

    Google Scholar 

  • Kolattukudy, P.E., Croteau, R., Brown, L.: Structure and biosynthesis of cuticular lipids. Hydroxylation of palmitic acid and decarboxylation of C28, C30 and C32 acids in Vicia faba flowers. Plant Physiol. 54, 670–677 (1974)

    Google Scholar 

  • Kreger, D.R.: Wax. In: Encycl. Plant Physiol. vol. X, pp. 249–269, Ruhland, W., ed. Berlin, Göttingen, Heidelberg: Springer 1958

    Google Scholar 

  • Meyer, M.: Die submikroskopische Struktur der kutinisierten Zell-membranen. Protoplasma 29, 552–586 (1938)

    Google Scholar 

  • Rodriquez-Miguens, B., Ribas-Marques, I.: Investigaciones quimicas sobre el corcho de Solanum tuberosum L. (patat). An. R. Soc. Esp. Fis. Quim. 68, 303–308 (1972)

    Google Scholar 

  • Schönherr, J.: Water permeability of isolated cuticular membranes: The effeci of cuticular waxes on diffusion of water. Planta 131, 159–164 (1976)

    Google Scholar 

  • Sitte, P.: Der Feinbau der Korkzellwände. In: Die Chemie der Pflanzenzellwand, pp. 421–432, Treiber, E., ed. Berlin, Göttingen, Heidelberg: Springer 1957

    Google Scholar 

  • Sitte, P.: Zum Feinbau der Suberinschichten im Flaschenkord. Protoplasma 54, 555–559 (1962)

    Google Scholar 

  • Sitte, P.: Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem. Physiol. Pflanz. 168, 287–297 (1975)

    Google Scholar 

  • Tulloch, A.P.: Chemistry of waxes of higher plants. In: Chemistry and Biochemistry of Natural Waxes, pp. 235–287, Kolattukudy, P.E., ed. Amsterdam, New York: Elsevier 1976

    Google Scholar 

  • Walton, T.J., Kolattukudy, P.E.: Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11, 1885–1897 (1972)

    PubMed  Google Scholar 

  • Wattendorf, J.: Ultrahistochemical reactions of the suberized cell walls in Acorus, Acacia, and Larix. Z. Pflanzenphysiol. 73, 214–225 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Scientific Paper No. 5330, Project 2001, College of Agriculture Research Center, Washington State University, Pullman, Washington 99164, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliday, C.L., Kolattukudy, P.E. & Davis, R.W. Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L.). Planta 146, 607–614 (1979). https://doi.org/10.1007/BF00388840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388840

Key words

Navigation