Skip to main content
Log in

Axioms and fundamental equations of image processing

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Image-processing transforms must satisfy a list of formal requirements. We discuss these requirements and classify them into three categories: “architectural requirements” like locality, recursivity and causality in the scale space, “stability requirements” like the comparison principle and “morphological requirements”, which correspond to shape-preserving properties (rotation invariance, scale invariance, etc.). A complete classification is given of all image multiscale transforms satisfying these requirements. This classification yields a characterization of all classical models and includes new ones, which all are partial differential equations. The new models we introduce have more invariance properties than all the previously known models and in particular have a projection invariance essential for shape recognition. Numerical experiments are presented and compared. The same method is applied to the multiscale analysis of movies. By introducing a property of Galilean invariance, we find a single multiscale morphological model for movie analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Allmen & C. R. Dyer. Computing spatiotemporal surface flow. Conference on Computer Vision, IEEE Computer Society Press. 303–309, 1991.

  2. L. Alvarez, P. L. Lions & J. M. Morel. Image selective smoothing and edge detection by nonlinear diffusion (II). SIAM J. Num. Anal, 29, 845–866, 1992.

    Google Scholar 

  3. H. Asada & M. Brady. The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 2–14, 1986.

    Google Scholar 

  4. E. B. Barret, P. M. Payton, N. N. Haag & M. H. Brill. General methods for determining projective invariants in imagery. Computer Vision Graphics Image Proc., 1991.

  5. G. Barles & P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equation, Asymp. Anal, to appear.

  6. H. Brezis. Analyse Fonctionelle, Théorie et Applications. Masson, Paris, 1987.

    Google Scholar 

  7. M. Campani & A. Verri. Computing optical flow from an overconstrained system of linear algebraic equations. Conference on Computer Vision 1991. IEEE Computer Society Press.

  8. J. Canny. Finding edges and lines in images. Technical Report 720, MIT, Artificial Intelligence Laboratory, 1983.

  9. F. Catté, T. Coll, P. L. Lions & J. M. Morel. Image selective smoothing and edge detection by nonlinear diffusion. Preprint, CEREMADE 1990. To appear in SIAM J. Num. Anal.

  10. Y -G. Chen, Y. Giga & S. Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Preprint, Hokkaido University, 1989.

  11. Y -G. Chen, Y. Giga, T. Hitaka & M. Honma. Numerical analysis for motion of a surface by its mean curvature. Preprint, Hokkaido University.

  12. M. G. Crandall, H. Ishii & P. L. Lions. User's guide to viscosity solution of second order partial differential equation. Preprint, CEREMADE, 1990.

  13. J. I. Diaz. A nonlinear parabolic equation arising in image processing. Extracta Matematicae, Universidad de Extremadura 1990.

  14. G. Dubek & J. Tsotsos. Recognising planar curves using curvature-tuned smoothing. Third Conference on Computer Vision 1990. IEEE Computer Society Press.

  15. G. Dubek & J. Tsotsos. Shape representation and recognition from curvature. Third Conference on Computer Vision 1990. IEEE Computer Society Press.

  16. L. C. Evans & J. Spruck. Motion of level sets by mean curvature, I. Preprint.

  17. S. V. Fogel. A nonlinear approach to the motion correspondance problem. Second Conference on Computer Vision 1988, IEEE Computer Society Press. 619–628.

  18. D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho, A. Heller & C. Rothwell. Invariant descriptors for 3-D object recognition and pose. IEEE Transaction of Pattern Analysis and Machine Intelligence, 13, 971–991, 1991.

    Google Scholar 

  19. Y. Giga & S. Goto. Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992.

  20. Y. Giga, S. Goto, H. Ishii & M. -H. Sato. Comparison principle and convexity preserving properties for singular degenerate parabolic equation on unbounded domains. Preprint, Hokkaido University, 1990.

  21. R. E. Graham. Snow removal: A noise-stripping process for TV signals, IRE Trans. Information Theory IT-9, 129–144, 1962.

    Google Scholar 

  22. G. H. Granlukd, H. Knutsson & R. Wilson. Anisotropic non-stationary image and its applications. Picture Processing Laboratory, Linkoeping University, lS-581 83 Linkoeping, Sweden.

  23. N. M. Grzywacz & A. L. Yuille. The motion coherence theory. Second Conference on Computer Vision 1988, IEEE Computer Society Press. 344–353.

  24. R. Hartshorne. Foundations of Projective Geometry. Benjamin, 1967.

  25. D. J. Heeger. Optical flow from spatiotemporal filters. Int. J. Computer Vision, 1, 279–302, 1988.

    Google Scholar 

  26. E. Hildreth. The measurement of visual motion. Cambridge, MIT Press 1984.

    Google Scholar 

  27. K. Hollig & J. A. Nohel. A diffusion equation with a nonmonotone constitutive function. System of Nonlinear Partial Differential Equations, J. Ball, ed., Reidel, 409–422, 1983.

  28. M. Kass, A. Witkin & D. Terzopoulos. Snakes: active contour models. First Conference on Computer Vision, 1987. IEEE Computer Society Press. 259–268.

  29. G. Kanizsa. Grammatica del vedere. Tl Mulino, Bologna 1980.

    Google Scholar 

  30. J. J. Koenderink. The structure of images, Biol. Cybern. 50, 363–370, 1984.

    Google Scholar 

  31. O. A. Ladyženskaja, V. A. Solonnikov & N. N. Ural'tseva. Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, 1968.

    Google Scholar 

  32. Y. Lamdan, J. T. Schwartz & H. J. Wolfson. Object recognition by affine invariant matching. In Proc. Computer Version and Pattern Recognition 88, 1988.

  33. D. Lee, A. Papageorgiou & G. W. Wasilkowski. Computational aspects of determining optical flow. Second Conference on Computer Vision 1988, IEEE Computer Society Press, 612–618.

  34. P. L. Lions. Generalized Solutions of Hamilton-]acobi Equations. Research Notes in Mathematics, 69, Pitman, Boston, 1982.

    Google Scholar 

  35. H-C. Liu & M. D. Srinath. Partial shape classification using contour matching in distance transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 1072–1079, 1990.

    Google Scholar 

  36. A. Mackworth & F. Mokhtarian. Scale-Based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 34–43, 1986.

    Google Scholar 

  37. S. Mallat & S. Zhong. Complete signal representation with multiscale edges. Technical report n∘ 483, Robotics Report n∘ 219, Courant Institute, Computer Science Division.

  38. P. Maragos. Tutorial on advances in morphological image processing and analysis. Optical Engineering, 26, 623–632, 1987.

    Google Scholar 

  39. D. Marr. Vision. Freeman, 1982.

  40. D. Marr & E. Hildreth. Theory of edge detection. Proc. Ray. Soc. Land., B207, 187–217, 1980.

    Google Scholar 

  41. J. M. Morel & S. Solimini. Segmentation of images by variational methods: a constructive approach. Revista Matematica de la Universidad Complutense de Madrid, 1, 169–182, 1988.

    Google Scholar 

  42. D. Mumford & J. Shah. Boundary detection by minimizing functionals, IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 1985.

  43. M. Nitzberg & Takahiro Shiota. Nonlinear Image Smoothing with Edge and Corner Enhancement. Technical Report n∘ 90-2, Division of Applied Sciences, Harvard University, Cambridge, 1990.

    Google Scholar 

  44. K. N. Nordstrom. Biased anisotropic diffusion — A unified Approach to Edge Detection. Preprint. Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley.

  45. S. Osher & L. Rudin. Feature-oriented image enhancement using shock filters. SIAM J. on Numerical Analysis, 27, 919–940, 1990.

    Google Scholar 

  46. S. Osher & J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J. Comp. Physics, 79, 12–49, 1988.

    Google Scholar 

  47. P. Perona & J. Malik. Scale space and edge detection using anisotropic diffusion. Proc. IEEE Computer Soc. Workshop on Computer Vision, 1987.

  48. A. Rattarangsi & R. T. Chin. Scale-Based Detection of Corners of Planer Curves. Third Conference on Computer Vision 1990. IEEE Computer Society Press.

  49. T.Richardson. Ph.D.Dissertation, MIT 1990.

  50. A. Rosenfeld & M. Thurston. Edge and curve detection for visual scene analysis. IEEE Trans. on Computers, C-20, 562–569, May 1971.

    Google Scholar 

  51. L. Rudin & S. Osher. Total variation based restoration of noisy, blurred images, submitted to SIAM J. Num. Analysis, 1992.

  52. L. Rudin, S. Osher & E. Fatemi. Nonlinear total variation based noise removal algorithms, Physica D., Proceedings of 11th Conf. on Experimental Mathematics, 1992.

  53. P. Saint-Marc, J.-S. Chen & G. Medioni. Adaptative smoothing: A general tool for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 514–529, 1991.

    Google Scholar 

  54. J. Serra. Image Analysis and mathematical Morphology, Vol1. Academic Press, 1982.

  55. A. Singh. An estimation-theoretic framework for image-flow computation. Third Conference on Computer Vision 1990. IEEE Computer Society Press.

  56. D. Sinha & C. R. Giardina. Discrete black and white object Recognition via morphological functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 275–293, 1990.

    Google Scholar 

  57. M. A. Snyder. On the mathematical foundations of smoothness constrains for the determination of the optical flow and for surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 1105–1114, 1991.

    Google Scholar 

  58. M. Soner. Motion of a set by the curvature of its mean boundary. Preprint.

  59. A. Verri & T. Poggio. Against quantitative optical flow. Conference on Computer Vision 1987. IEEE Computer Society Press, 171–180.

  60. I. Weiss. Projective invariants of shapes. In Proc. DARPA IU Workshop, 1125–1134, 1989.

  61. A. P. Witkin. Scale-space filtering. Proc. of IJCAI, Karlsruhe, 1019–1021, 1983.

  62. A. Yuille & T. Poggio. Scaling theorems for zero crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 15–25, 1986.

    Google Scholar 

  63. L. Alvarez, F. Guichard, P.-L. Lions & J.-M. Morel. Axiomatisation et nouveaux opérateurs de la morphologie mathématique. C. R. Acad. Sci. Paris, 315, Sér. I, 265–268, 1992.

    Google Scholar 

  64. L. Alvarez, F. Guichard, P.-L. Lions & J.-M. Morel. Axiomes et équations fundamentales du traitement d'images (Analyse multiéchelle et E.D.P.). C. R. Acad. Sci. Paris, 315, Sér. I, 135–138, 1992.

    Google Scholar 

  65. L. Alvarez, F. Guichard, P.-L. Lions & J.-M. Morel. Analyse multiéchelle des films. C. R. Acad. Sci. Paris, 315, Sér. I, 1145–1148, 1992.

    Google Scholar 

  66. S. Angenant. Parabolic equations for curves on surfaces I, II. University of Wisconsin-Madison, Technical Summary Reports, 89-19, 89-24, 1989.

  67. G. Barles. Remarks on a flame propagation model. Technical Report 464, INRIA Rapports de Recherche, December 1985.

  68. G. Barles & C. Georgelin. A simple proof of convergence for an approximation scheme for computing motions by mean curvature. Preprint 1992.

  69. M. Gage & R. S. Hamilton. The heat equation shrinking convex plane curves. J. Diff. Geom., 23, 69–96, 1986.

    Google Scholar 

  70. M. Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26, 285–314, 1987.

    Google Scholar 

  71. R. Hummel. Representations based on zero-crossings in scale-space. Proc. IEEE Computer Vision and Pattern Recognition Conf., 204–209, 1986.

  72. B. B. Kimia. Toward a computational theory of shape. Ph. D. Dissertation, Department of Electrical Engineering, McGill University, Montreal, Canada, August 1990.

    Google Scholar 

  73. J. J. Koenderink & A. J. Van Doorn. Dynamic shape. Biol. Cyber., 53, 383–396, 1986.

    Google Scholar 

  74. B. B. Kimia, A. Tannenbaum & S. W. Zucker. On the evolution of curves via a function of curvature, 1: the classical case. To appear in J. Math. Anal. Appl.

  75. C. Lopez & J. M. Morel. Axiomatisation of shape analysis and application to texture hyperdiscrimination. Proceedings of the Trento Conference on Motion by Mean Curvature and Related Models. Springer, 1992.

  76. A. Mackworth & F. Mokhtarian. A theory of multiscale, curvaturebased shape representation for planar curves. IEEE Trans. Pattern Anal. Machine Intell. 14, 789–805, 1992.

    Google Scholar 

  77. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Machine Intell., 11, 701–716, 1989.

    Google Scholar 

  78. B. Merriman, J. Bence & S. Osher. Diffusion generated motion by mean curvature. April 1992. CAM Report 92-18. Dept. Mathematics. University of California, Los Angeles.

    Google Scholar 

  79. G. Sapiro & A. Tannenbaum. On affine plane curve evolution. Dept. Electrical Engineering. Technion, Israel Institute of Technology, Haifa, Israel. Preprint, February 1992.

    Google Scholar 

  80. G. Sapiro & A. Tannenbaum. Affine shortening of non-convex plane curves. Dept. of Electrical Engineering. Technion, Israel Institute of Technology, Haifa, Israel. Preprint, February 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, L., Guichard, F., Lions, P.L. et al. Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123, 199–257 (1993). https://doi.org/10.1007/BF00375127

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375127

Keywords

Navigation